Quantum computing

A.Y. 2020/2021
Overall hours
Learning objectives
The course aims to provide students with a general understanding of how quantum mechanics can be applied to computational problems. Starting from classical logic concepts, the main single-qubit and two-qubit logic gates are introduced in order to analyze the main quantum algorithms. The specific purpose of the course is also to provide students with the mathematical and physical tools necessary to deal with the problems discussed throughout the course and to develop knowledge of the physical systems used to implement a quantum computer, highlighting the experimental problems associated with them.
Expected learning outcomes
At the end of the course the student must:
1. master the mathematical tools used in quantum computation;
2. know the main quantum logic gates;
3. be able to describe a quantum algorithm through a quantum circuit;
4. know the applications of the quantum Fourier transform;
5. know and formally describe the main sources of error that can occur during quantum computation;
6. apply the basic techniques of quantum error correction;
7. know the main physical systems used to implement quantum computation;
8. better understand concepts such as quantum superposition and entanglement;
9. be able to read and understand a research article on quantum computing.
Course syllabus and organization

Unique edition

Lesson period
First semester
FIS/03 - PHYSICS OF MATTER - University credits: 6
Lessons: 42 hours
Professor: Olivares Stefano