Quantum optics

A.Y. 2016/2017
6
Max ECTS
48
Overall hours
SSD
FIS/03
Language
Italian
Learning objectives
Comprensione dei concetti e padronanza delle tecniche di calcolo rispetto agli argomenti seguenti:
1) Quantizzazione del campo di radiazione a partire dall'elettrodinamica classica;
2) Caratterizzazione delle principali osservabili e dei più rilevanti stati del campo di radiazione;
Stati classici e nonclassici della radiazione;
3) Teoria quantistica della coerenza. Effetti di bunching e anti-bunching
4) Generazione, manipolazione e caratterizzazione di stati nonclassici, processi parametrici e
generazione di squeezing ed entanglement;
5) Dinamica del campo di radiazione come sistema quantistico aperto;
6) Atomo a due livelli e sua interazione con il campo quantizzato;
7) Hamiltoniana di Jaynes-Cummings ed effetti dinamici
8) Sistemi ottico-quantistici in esperimenti di fondamento ed in applicazioni alla quantum information.
Expected learning outcomes
Undefined
Course syllabus and organization

Single session

Responsible
Lesson period
Second semester
Course syllabus
QUANTUM E.M. FIELD
Quantization of the classical electromagnetic field. Field operators and density matrix. Fock space, Thermal radiation. The ground state of the radiation field and its physical effects. Quantum theory of the radiation detection. Theory of the quantum coherence.

RADIATION MATTER INTERACTION
Quantum theory of the emission and absorption. Microscopic interaction and quantum dynamics of a two-level atom: Jaynes-Cummings model and dressed states.

COHERENT STATES
Properties of the coherent states. Displacement operator and BCH formulae. Probability distributions and moments generation functions. Generalized Wigner functions and ordering. Gaussian states and their description.

NON-CLASSICAL STATES
Classical and non-classical radiation states. Minimal uncertainty states and squeezed states. Squeezing operator. Number distributions and quadratures.

OPEN SYSTEMS IN QUANTUM MECHANICS
Some elements for a description of open systems and dissipation in quantum optics. Master equations and Fokker-Planck equation. Decoherence.

QUANTUM MECHANICS OF THE BEAMSPLITTER
Effective Hamiltonian. Field evolution. Two-photon mixing and single atom fluorescence. Modeling quantum efficiency with a beam splitter. Squeezing/entanglement duality.

RADIATION AMPLIFICATION
Elements of nonlinear optics: the susceptibility. Quantum properties of optical parametric amplifiers. Phase-insensitive amplifiers: twin-beam and entanglement. Phase-sensitive amplifiers: squeezing generation. Quantum frequency conversion.

QUANTUM MEASUREMENTS
Photon number resolving detection. Homodyne and heterodyne detection. Quantum tomography.

TECHNOLOGICAL APPPLICATIONS
The atomic clock and the atomic fountain clock. Squeezing and interferometry. Quantum teleportation. Superconducting circuits quantum electrodynamics.
FIS/03 - PHYSICS OF MATTER - University credits: 6
Lessons: 48 hours
Professor(s)
Reception:
tuesday 14:30 - 19:00
Department of Physics, via Celoria 16 Milan (fifth floor, room A/5/C3)
Reception:
by e-mail appointment
Room A/5/C8 - 5th floor LITA building, Dipartimento di Fisica (via Celoria, 16 - 20133 Milano)