Engineering Geology and Laboratory

A.Y. 2017/2018
Overall hours
Learning objectives
General aims: The course provides the basic principles of soil and rock mechanics and hydrogeology. After a general introduction to the rheology fundaments, the physical and mechanical properties of soil are treated, describing the main laboratory techniques. The second part is addressed to the geomechanical characterization of rock material and discontinuities by laboratory tests. The third part of the course supply the basic knowledge of hydrogeology.
Knowledge and understanding: 1) describing method and solutions to determine physic-mechanical properties of soils, rocks, rock masses, 2) fundamental principles of groundwater flow and hydrogeological properties of soils
Applying knowledge and understanding: elaborating and analyzing main geotechnical lab. tests and main lab. and field hydrogeological methods
Expected learning outcomes
Making judgements: developed through the ability of collecting geotechnical and hydrogeological data and analyzing their physical meaning
Communication skills: ability to manage oral communication in the related topics with appropriate technical background
Learning skills: ability to solve basic problems in soil and rocks characterization and in groundwater management
Course syllabus and organization

Single session

Lesson period
First semester
Course syllabus
What are Engineering Geology and Applied Geology? Fields of application and survey tools.
Theoretical Principles: Continuous Mechanic. Stress and strain tensors a their relations. Basic reological models. The stress path and stress state representation by "Mohr-Coulomb circle"
Soil description and classification: the nature of soil. Particle size analysis. Phase relationships. Relative density . Consistency and Atterberg limits. Geotechnical soil classification (Unified Soil Classification System).
Soil Mechanics: Principle of effective stress. Geostatic tensions, effect of phreatic and confining aquifer. Consolidation theory. Oedometric Test. Shear strength criterions and parameters (friction angle and cohesion). Uniaxial and triaxial compression tests. Direct shear strength test.
Rock masses: Continuous or discontinuous behavior?
Intact rock material: Index properties. Laboratory tests: point load test; uniaxial compression test and triaxial compression test, Brasilian test, Direct tension test. Mechanical classification of intact rocks.
Joints properties: roughness (JRC); wall compressive strength (JCS). Joint shear strength parameters: Barton empirical equation; Direct shear strength test.
Rock masses: Procedures for geomechanical rock mass characterization and classification. The Rock Mass reating classification of Bieniawski (RMR).
EXAMPLES of Applications
Slope stability: classification of landslides and causes. Equilibrium method analysis: the case of indefinite slope, plane translational slide.

Introduction to hydrogeology: Water budget. Measurement of the water budget parameters.
Measurement methods of hydrogeological parameters: porosity and void index, permeability and hydraulic conductivity, water content and saturation degree. Heterogeneity and anisotropy in soils.
Hydrogeological characterization: Aquifer, aquitard, aquiclude and aquifuge. Hydrogeological structure and boundaries. Hydrogeological cross section reconstruction
Groundwater flow: Piezometric maps. Surface water and groundwater interaction. Darcy law. Mass conservation law.
Hydraulic conductivity measures: laboratory and in situ test (Lefranc, slug test, Lugeon), Dupuit laws
EXAMPLES of Applications
Hydrogeological sections, potentiometric maps, infiltration methods, lab. and field hydraulic conductivity tests
GEO/05 - ENGINEERING GEOLOGY - University credits: 9
Practicals: 24 hours
Lessons: 56 hours
Monday 10.30 - 12-30
Via Mangiagalli 34, Ground Floor