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Personal Information
Name Marco

Surname Caroccia
Birth date 06 November 1987

E-mail carocciam@yahoo.it, caroccia.marco@gmail.com, mcaroccia@fc.ul.pt

Current employment
Dec. 2018

Now
Post Doc, Research fellowship funded by Scuola Normale Superiore di Pisa and
University of Florence.

Previous employment
Sept. 2017
Sept. 2018

Post Doc, Universidade De Lisboa, Faculdade de Ciências - Centro de Matemática e
Aplicações Fundamentais, Campo Grande, Edifício C6, Piso 2, 1749-016 - Lisboa.

Sept. 2015
Sept. 2017

Post Doc, Carnegie Mellon University, Center for Nonlinear Analysis, 5000 Forbes
Avenue, Pittsburgh (PA), 15213 - USA.

Education
2011-2015 Ph.D., Università degli studi di Pisa, Pisa, I received my Ph.D after the dissertation

in July 27, 2015.
Ph.D. in Analysis

Thesis On the isoperimetric properties of Planar N -clusters
Supervisor Prof. Giovanni Alberti and Prof. Francesco Maggi
Summary We have studied some questions involving the N -clusters in Rn. An N -cluster is a family of

N -disjoint sets of finite perimeter.

2009–2011 Master, Università degli studi di Firenze, Firenze, 110/110.
Applied Mathematics

Final work Asymptotic inequalities for minimal planar clusters
Supervisor Prof. Francesco Maggi
Summary Proof of the Honeycomb Hexagonal Conjecture and description of its consequence in the Cluster

theory.

2006–209 Bachelor, Università degli studi di Firenze, Firenze, 110/110.
General Curriculum, pure Mathematics
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Final work Block Cipher Algorithm and primitive group
Supervisor Prof. Orazio Puglisi
Summary Discussion of some algebraic results involving the security of the DES-AES cipher algorithms:

Data Encryption Standard and Advanced Encryption Standard (US federal standard cipher
algorithms adopted by the National Security Agency in 2009). Explanation of a “differential
crypt-analysis algorithm ” testing the security of the DES code. Some consideration about the
security of the AES code.

2001–2006 General certificate of Secondary Education, Technical Institute -A. Meucci- ,
Firenze, 100/100.
Electronics and telecommunications industry expert foreman

List of publications
2019 On the integral representation of variational functionals on BD.

Caroccia - Focardi - Van Goethem, Preprint http://cvgmt.sns.it/paper/4404/ (Sub-
mitted to SIMA).

2019 Mumford – Shah functionals on graphs and their asymptotics.
Caroccia - Chambolle - Slepčev, Preprint arXiv:1906.09521 (Submitted to NONLIN-
EARITY).

2018 Damage-driven fracture with low-order potentials: asymptotic behavior, existence and
applications
Caroccia - Van Goethem, ESAIM: M2AN, 53 4 (2019) 1305-1350 doi:
https://doi.org/10.1051/m2an/2019024

2017 Equilibria configurations for epitaxial crystal growth with adatoms
Caroccia - Cristoferi - Dietrich, Archive for Rational Mechanical Analysis (2018).
https://doi.org/10.1007/s00205-018-1258-9

2017 The Cheeger N -problem in terms of BV functions
Caroccia - Littig, Journal of Convex Analysis, Volume 26, Num- ber 1 (2019).

2016 On the isoperimetric properties of Planar N -clusters.
Caroccia - Preprint arXiv:1601.07116

2015 Cheeger N -clusters
Caroccia - Calculus of variation and Partial Differential Equation (2017) 56: 30
doi:10.1007/s00526-017-1109-9

2014 A sharp quantitative version of Hales’ isoperimetric honeycomb theorem
Caroccia, Maggi - Journal de Mathematiques Pures et Appliquees, 106.5 (2016):
935-956

2014 A note on the stability of the Cheeger constant of N -gons.
Caroccia, Neumayer - Journal of Convex Analysis, Volume 22, Number 4, pgg. 1207-
1213 (2015)

Seminars
June 13,

2019
Seminar, Universidade de Lisboa, Center of Mathematics, Fundamental Applications
and Operations Research - CmafCIO, Lisbon, Portugal.

Febr 06, 2019 Conference Short talk, Levico Terme, Bellavista Relax Hotel, Viale Vittorio
Emanuele III 7, 38056 (Tn), Trento, Italy.
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October 24,
2018

Seminar, University of Jyväskylä, Department of Mathematics and Statistics,
Jyväskylä, Finland.

June 15,
2018

Seminar, Università degli studi di Firenze, Department of Mathematics and Statistics,
Florence, Italy.

May 20-25,
2018

Conference speaker, Banff international research station, Alberta, Canada, Confer-
ence title: "Topics in the Calculus of Variations: Recent Advances and New Trends".

Apr 03, 2017 Seminar, University of Jyväskylä, Department of Mathematics and Statistics,
Jyväskylä, Finland.

Apr 15, 2016 Seminar, University of Leiden, Lorentz Center, Leiden, Netherlands.
Jan 8, 2016 Seminar, University of Cologne, Mathematical Institute, Köln, Germany.

Oct 27, 2015 Seminar, Carnegie Mellon University, Center for Non Linear Analysis, Pittsburgh
(PA), USA.

July 17, 2015 Seminar, Max Planck Institute, Max-Planck-Institute for mathematics in the sciences,
Leipzig, Germany.

May 20, 2015 Seminar, Università degli studi di Modena, Dipartimento di Scienze Fisiche, Infor-
matiche, Matematiche, Modena, Italy.

Research experiences
XXIX National conference in Calculus of Variation

Feb 04, 2019
Feb 08, 2019

Conference, Levico Terme, Bellavista Relax Hotel, Viale Vittorio Emanuele III 7,
38056 (Tn), Trento, Italy.
Conference on calculus of variation organized by CIRM. I have had also the chance to give a
short talk.
Emergence of Structures in Particle Systems: Mechanics, Analysis and Compu-
tation

Oct 28, 2018
Nov 2, 2018

Workshop, Oberwolfach, (GE), MFO, Oberwolfach Research Institute for
Mathematics.

Topics in the Calculus of Variations: Recent Advances and New Trends
May 20, 2018
May 25, 2018

Workshop, Alberta(Canada), Banff international research station, Alberta, Canada,
Workshop on Calculus of variation held at the international research station in Banff.
I have had also the honor to be a speaker.

Topics in Applied Analysis and Optimisation
Dec 6, 2017
Dec 8, 2017

Conference, Lisbon (PO), Centro de Matemática, Aplicações Fundamentais e Inves-
tigação Operacional, The event presented and discussed the main scientific interests
among the research groups of the Weierstrass Institute in Berlin and mathematics
centres in Portugal.

A Mathematical Tribute to Ennio De Giorgi
Sep 19, 2016
Sep 23, 2016

Conference, Pisa (IT), Centro di ricerca Ennio De Giorgi,Palazzo dei congressi, Via
Giacomo Matteotti 1, Pisa(Pi), On the occasion of the vigintennial of Ennio De Giorgi’s
departure, the meeting gathers many generations of mathematicians and aims at the
presentation of the most recent advances in the many research fields marked by De
Giorgi’s contributions.

New Frontiers in Nonlinear Analysis for Materials
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Jun 2, 2016
Jun 10, 2016

Summer school, Pittsburgh (PA), Center for Nonlinear Analysis, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh (PA), USA.
PIRE-CNA 2016 Summer school

New challenge for the calculus of variation stemming for problems in the materials
science and image processing

May 16, 2016
May 20, 2016

Workshop, Montréal, Quebec (CA)), Centre de recherches mathématiques (CRM),
Université de Montréal, PO Box 6128, Station Centre-ville, Montréal.
Workshop in honor of the 60th birthday of Irene Fonseca

Micro structure Evolution in Materials: Defects, Cracks & Interfaces
Apr 11, 2016
Apr 15, 2016

Workshop, Leiden (NE), University of Leiden, Lorentz center, 3rd Floor Oort Building,
Niels Bohrweg, Leiden (NE).
Workshop on materials science.

Analysis of partial differential equations
Dec 07, 2015
Dec 10, 2015

Conference, Phoenix (AR), Double tree resort Hilton, Paradise Valley, Scottsdale,
Phoenix (AR), US.
SIAM Conference.

Mathematics and Mechanics in the 22nd Century: Seven Decades and Counting
Oct 23, 2016
Oct 25, 2016

Workshop, Eugene (OR), Valley River Inn Hotel, Eugene (OR), US.
IMA Special Workshop in honor of the 90th birthday of Jerry Ericksen.)

XXV National conference in Calculus of Variation
Feb 02, 2015
Feb 06, 2015

Conference, Levico Terme, Bellavista Relax Hotel, Viale Vittorio Emanuele III 7,
38056 (Tn), Trento, Italy.
Conference on calculus of variation organized by CIRM.

Fall Semester in Austin
Aug 07, 2014
Dec 18, 2014

Courses and research, UT Texas at Austin, 2515 Speedway, 78712 Texas, (512)
471-7711, Austin, Texas (US).
I spent five months in Austin to work with my Ph.D thesis co-advisor Francesco Maggi. We
worked on some stability isoperimetric issues involving the hexagonal tiling in the plane. I also
attended the course: Geometric Measure Theory (Teacher Francesco Maggi).

XXIV National conference in Calculus of Variation
Jan 26, 2014
Jan 31, 2014

Conference, Levico Terme, Bellavista Relax Hotel, Viale Vittorio Emanuele III 7,
38056 (Tn), Trento, Italy.
Conference on calculus of variation organized by CIRM.

School and workshop on "geometric measure theory and optimal transport"
Jul 15, 2014
Aug 03, 2014

School and workshop, ICTP, Strada costiera 11, 3415 (Ts), Trieste, Italy.
The main topics of the school were the optimal transport theory and the theory of currents.
The mini course on "optimal transport theory" were taught by Alessio Figalli and Guido De
Philippis. As far as the course "theory of currents" is concerned the teachers were Camillo
De Lellis and Emanuele Spadaro. At the end of the school I attend a one-week conference on
these fields.
Convexité cachée en équations aux derivées partielles non-linéaires

May 14, 2013
May 16, 2013

Lectures series, Université catholique de Louvain, Institut de recherche en mathé-
matique et physique, Louvain La Neuve, Belgium.
Course on optimal transport.
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XXIII National conference in Calculus of Variation
Feb 3, 2013
Feb 8, 2013

Conference, Levico Terme, Bellavista Relax Hotel, Viale Vittorio Emanuele III 7,
38056 (Tn), Trento, Italy.
Conference on calculus of variation organized by CIRM.

International Conference on Fluids And Variational Methods
Jan 28, 2013
Feb 1, 2013

Conference, University of Leipzig, Felix-Klein-Hörsaal, Room 501, Paulinum, Uni-
versity of Leipzig, Universitätsstraße 1, 04109, Leipzig, Germany.
Conference on variational methods in fluids dynamics.

XXII National conference in Calculus of variation
Feb 5, 2012

Feb 10, 2012
Conference, Levico Terme, Bellavista Relax Hotel, Viale Vittorio Emanuele III 7,
38056 (Tn), Trento, Italy.
Conference on calculcus of variation organized by CIRM.

Summer School
Jul 31, 2011
Sept 2, 2011

School, Universitá degli studi di Perugia, Via Vanvitelli 1, 06123, Perugia, Italy.
In August 2011 I attended the "SMI", (Scuola Matematica interuniversitaria) in Perugia. I at-
tended two lectures in analysis named Partial Differential Equation (given by prof. Pagani,
Carlo and Johnson, Russell) and Functional Analysis (given by prof. Milmann, Vitali and
Eidelman, Yuli)

International Modeling Week
June 14,

2010
June 22,

2010

School and workshop, Universidad Complutense de Madrid, Plaza de Ciencias, 3
Ciudad Universitaria 28040, Madrid, Spain.
In June 2010 I attended the "International Modeling Week" in Madrid offered by the Universidad
Complutense de Madrid trough a scholarship. The work, named "Calibration of single-factor
HJM models of interest rates", was about a mathematical-economic model. Supervisors: Prof.
Gerardo Oleaga (UCM), Miguel Carillon Alvarez (Banco Santander).

Event organized
Topics in Nonlinear Analysis: Calculus of Variations and PDEs

Oct 10, 2018
Oct 12, 2018

Conference, Lisboa (PT), Faculdade de Ciências, Universidade de Lisboa, Conference
on Calculus of Variation - https://sites.google.com/view/cvpdelisboa/home.

Teaching experience
Escola de Verão de Matemática (summer school in mathematics)

Jun 20, 2018
Jun 22, 2018

Departamento de Matematica, Faculdade de Ciencias, Universidade de Lisboa,
Lisbon, PT, Calculus of Variations: birth and rise of a new discipline.
Three hours class for master students
https://ciencias.ulisboa.pt/pt/escola-de-verao-de-matematica

Principle of real analysis II - Spring 2017
Jan 2017
May 2017

Carnegie Mellon University, Mellon College of Science, Pittsburgh (PA), US,
Principle of real Analysis II.

Principle of real analysis I - Fall 2016
Sep 2016
Dec 2016

Carnegie Mellon University, Mellon College of Science, Pittsburgh (PA), US,
Principle of real Analysis I.

Principle of real analysis II - Spring 2016
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Jan 2016
May 2016

Carnegie Mellon University, Mellon College of Science, Pittsburgh (PA), US,
Principle of real Analysis II.

Principle of real analysis I - Fall 2015
Sep 2015
Dec 2015

Carnegie Mellon University, Mellon College of Science, Pittsburgh (PA), US,
Principle of real Analysis I.

Analisi 1 - Fall 2013, Teaching Assistent
Sep 2013
Dec 2013

Università degli studi di Pisa, Dipartimento di ingegneria civile, Pisa,
Analisi I.

Languages
English -
writing

(comparable to) C1 level

English -
speaking

(comparable to) C1 level

French -
writing

(comparable to) A1 level

French -
speaking

(comparable to) A2 level

Programming languages
C++ Sufficient

Mat lab Good
ASM Sufficient

July 28, 2019
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MAIN CONTRIBUTIONS AND FURTHER EXTENSIONS

M. CAROCCIA

Abstract. In this attachment we give a brief description of the main contributions and possible

further extensions.

Contents

1. Integral representation of local energy functionals on BD (with Matteo Focardi and
Nicolas Van Goethem) - Cvgmt preprint 1

2. Mumford-Shah functionals on graphs and their asymptotics (with Dejan Slepčev and
Antonin Chambolle - [CCS19]) 3

3. Damage-driven fracture with low-order potentials: asymptotic behavior, existence and
applications (with Nicolas Van Goethem) [CVG17] 3

4. Equilibria configurations for epitaxial crystal growth with adatoms (with Riccardo
Cristoferi and Laurent Dietrich) [CCD18] 5

5. A sharp quantitative version of Hales’ isoperimetric honeycomb theorem (joint work
with Francesco Maggi - UT Texas at Austin) [CM16] 7

6. Equidistribution of the energy for an isoperimetric partition problem with fixed
boundary (with Giovanni Alberti - Università degli studi di Pisa)[Car16] 8

7. Cheeger N -clusters [Car17] 9
References 11

1. Integral representation of local energy functionals on BD (with Matteo
Focardi and Nicolas Van Goethem) - Cvgmt preprint

It is a classical problem in Calculus of Variations to determine the lower semicontinuous envelope
of energies defined on subspaces of the space of functions with Bounded Deformation BD(Ω)
(namely those functions u : Ω → Rn whose symmetric gradient e(u) = 1

2 (∇u+∇ut) is defined as
a vector valued Radon measure Eu) in order to find the limits of minimizing sequences lying in
the larger space BD(Ω). It is a well known fact [ACDM97] that BD(Ω) maps are approximately
differentiable Ln-a.e. in Ω, the jumps set is Hn−1-rectifiable, and Eu can be decomposed as

Eu = e(u)LnxΩ + [u]� νuHn−1xJu + Ecu,

where e(u) = ∇u+∇ut

2 , ∇u being the approximate gradient of u, [u] = u+ − u− denotes the jump
of u over the jump set Ju, u± being the traces left by u on Ju, νu is a unitary Borel vector field
normal to Ju (here, a� b := 1

2 (a⊗ b+ b⊗ a), a, b ∈ Rn, denotes the symmetrized tensor product),
and Ecu is the Cantor part of Eu.

The typical energy considered for relaxation ([Rin11], [ARDPR17], [Rin18]) are defined, for
suitable integrands f , as

F (u) :=

∫
Ω

f(x, e(u)(x)) dx

on LD(Ω) (the space of maps u ∈ L1(Ω;Rn) with e(u) ∈ L1(Ω;Rn) and usually are set to be +∞
otherwise. The L1(Ω;Rn) sequential lower semicontinuous envelope of the functional F , that is the
greatest functional less or equal than F which is sequentially L1 lower semicontinuous, is given by

RelF (u) := inf
{

lim inf
j→+∞

F (uj) : uj → u in L1(Ω;Rn)
}
,
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provided some coercivity assumptions on the integrands are imposed. Several progress has been
done in the recent years in computing the L1 semicontinuos envelope of such energies, also due to
a huge improvement in the comprehension of the structure of the Cantor part of the measure Eu
([DPR16],[DPR17]) providing the analog of Alberti’s rank-one theorem in the BV setting.

Theorem 1.1 ([DPR16]). Let u ∈ BD(Ω). Then, for |Ecu|-a.e. x ∈ Ω

dEu

d|Eu|
(x) =

η(x)� ξ(x)

|η(x)� ξ(x)|
(1.1)

for some ξ, η : Ω→ Sn−1 Borel vector fields.

This result allows also to approach the problem of relaxation throughout the Global method
[BFM98], namely a procedure that, starting from very general properties of an L1-lower semicontin-
uous energy F , enables to give its integral representation in terms of the measures Ln,Hn−1, |Ecu|.
With Prof. Focardi and prof. Van Goethem we have addressed such a question for given energies
F : BD(Ω)×O∞(Ω)→ R (here O∞(Ω) stands for a family of regular open subsets of Ω) satisfying

(H1) F(·;A) is L1(A;Rn) lower semicontinuous for all A ∈ O∞(Ω);
(H2) There exists a constant C > 0 such that for every (u,A) ∈ BD(Ω)×O∞(Ω),

1

C
|Eu|(A) ≤ F(u;A) ≤ C(Ln(A) + |Eu|(A)); (1.2)

(H3) F(u; ·) is the restriction to O∞(Ω) of a Radon measure for every u ∈ BD(Ω).

For technical reason we required also the following continuity properties

(H4) There exists a modulus of continuity Ψ such that

|F(v + u(· − x0);x0 +A)−F(u;A)| ≤ Ψ(|x0|+ |v|)(Ln(A) + |Eu|(A)) (1.3)

for all (u,A, v, x0) ∈ BD(Ω)×O∞(Ω)× Rn × Ω, with x0 +A ⊂ Ω;
(H5) There exists a modulus of continuity Ψ such that

|F(u+ L(· − x0);A)−F(u;A)| ≤ Ψ(|L|diam(A))(Ln(A) + |Eu|(A)) (1.4)

for every (u,A,L) ∈ BD(Ω)×O∞(Ω)×Mn×n
skew, and for all x0 ∈ A.

We have shown that the following Theorem integral representation result is in force.

Theorem 1.2 (C., Focardi,Van Goethem - 2019). Let F : D(Ω)×O∞(Ω) be an energy satisfying
(H1)-(H5). Then, for all (u,A) ∈ BD(Ω)×O∞(Ω) it holds

F(u;A) =

∫
A

f(x, u(x), e(u)(x)) dx+

∫
Ju∩A

g(x, u−(x), u+(x), νu(x)) dHn−1(x)

+

∫
A

f∞
(
x, u(x),

dEcu

d|Ecu|
(x)
)

d|Ecu|(x),

where f and g can be explicitely computed and where

f∞(x0, v,A) := lim sup
t→+∞

f(x0, v, tA)− f(x0, v, 0)

t
, (1.5)

Let us Remark that a similar result in the context of SBD maps (namely such maps u ∈ BD(Ω)
with Ecu = 0) has been achieved in [ET03] under a more rigid invariance hypothesis (H5) which
kills the possible dependence from u of the energy. The extension to the full BD case can be
reached throughout the additional information provided by Theorem 1.1 on the Cantor part Ecu
of the measure Eu combined with a suitable selection of the blow-up sequence around a point
x ∈ sptEcu.

After having carefully chosen the integrand f0, it is possible to show that an energy of the type

F0(u;A) :=

∫
A

f0(x, u(x), e(u)(x)) dx

defined on LD(Ω) has the nice property that RelF0 satisfies (H1)-(H5). With Theorem 1.2 at hand
we can thus provide the following relaxation result.
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Theorem 1.3 (C., Focardi, Van Goethem - 2019). For all (u,A) ∈ BD(Ω)×O∞(Ω) it holds

RelF0(u,A) =

∫
A

f(x, u(x), e(u)(x)) dx

+

∫
Ju∩A

g(x, u−(x), u+(x), νu(x)) dHn−1(x) +

∫
A

f∞
(
x, u(x),

dEcu

d|Ecu|
(x)
)

d|Ecu|(x),

where f and g can be explicitely computed in terms of f0.

Notice that this result allows to treat energies which might possibly depends on u.

2. Mumford-Shah functionals on graphs and their asymptotics (with Dejan
Slepčev and Antonin Chambolle - [CCS19])

In collaboration with Dejan Slepčev we have studied a Γ-convergence problem involving a
non-local approximation of the Mumford-Shah functional on graph. For a given cloud of points
{x1, . . . , xn} ⊂ Ω chosen according to some distribution ρ ∈ L1 (namely according to the Radon
measure µ = ρLn) and for a given function u : {x1, . . . , xn} → R. By following the works [Gob98]
and [GM01], we define the non-local Mumford-Shah for the graph as

Fε,n(u) :=
1

ε

1

n2

n∑
i,j=1

arctan

(
|u(xi)− u(xj)|2

|xi − xj |

)
ηε(xi − xj)

where ηε is a suitable Kernel vanishing at any scale bigger than ε. In the work [Gob98] the author
shows that the family of functionals

Fε(u) :=
1

ε

∫
Ω×Ω

arctan

(
|u(x)− u(y)|2

|x− y|

)
ηε(x− y) dxdy

Gamma converges to the local Mumford - Shah

F(u) := λ

∫
Ω

|∇u|2 dx+ µHn−1(Su)

as was conjectured by Ennio De Giorgi. Here λ, µ are suitable dimensional constant and u ∈ BV (Ω).
By exploiting this property and by suitably define a topology that allows us to compare functions
definite on different graphs (namely the TLp topology introduced by Dejan Slepcev and Nicolás
Garćıa Trillos in [GTS16] and based on the optimal transport theory) we are able to show that,
along a sequence of εn that decays to zero fast enough with respect to n → +∞, Fεn,n Gamma
converges to the local Mumford-Shah suitably weighted with the distribution ρ. A similar work
has been already developed for the non local total variation in [GTS16].

3. Damage-driven fracture with low-order potentials: asymptotic behavior,
existence and applications (with Nicolas Van Goethem) [CVG17]

Given a body Ω, the potential energy of a deformation u ∈ SBD(Ω) is given by

F(u) :=

∫
Ω

Ae(u) · e(u) dx+

∫
Ju

k(x, u+, u−, ν(x)) dHn−1(x) (3.1)

as discussed in [FM98]. Here k is an energy density on the fracture that depends on the material
(the fracture, or crack, is modeled by Ju) and A : Mn×n

sym →Mn×n
sym is a fourth order tensor defined

on the symmetric matrices. In [FI14] it has been proved that the sequence of energies

Fε(u, v) :=


∫

Ω

[
vAe(u) · e(u) +

1

ε
(1− v)2 + ε|∇v|2

]
dx if (u, v) ∈ Xε

+∞ otherwise

(3.2)
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(here Xε := H1(Ω;Rn)×W 1,∞(Ω; [ε, 1]) ⊂ BD(Ω)×W 1,∞(Ω; [0, 1])) is Γ-converging to an energy
of the type (3.1), more precisely to

F(u, v) :=


∫

Ω

Ae(u) · e(u) dx+ aHn−1(Ju) + b

∫
Ju

√
A[u]� ν · [u]� ν if u ∈ SBD(Ω),

and v = 1

+∞ otherwise
(3.3)

where a, b are dimensional constant and v�w := 1
2 (v⊗w+w⊗v). In a recent work from [XVGN17]

it has been derived a model that takes into account the presence of an high pressure fluid pumped
into the crack in order to model the evolution of what is called the hydraulic fracture. The model
considers a damage variable v as in (3.2) taking values ≈ 0 on a region ω ⊂ Ω. On this damaged
region the authors consider the presence of a pressure p (induced by an incompressible fluid that is
pushing through the material) that drives the evolution of the system (in particular of the damage).
The stored energy in the damaged region is seen to be proportional to pdiv(u). In this setting, we
see that a natural way to express this model is given by

Gε(u, v) :=



∫
Ω

[
vAe(u) · e(u) +

1

ε
(1− v)2 + ε|∇v|2

]
dx

−
∫

Ω

p(x, u, e(u), v)div(u)ζ(v) dx if (u, v) ∈ Xε

+∞ otherwise

(3.4)

where ε represent the size of the damaged region. In particular, this turns out to be a modification
of the energy (3.1). By considering the pressure p depending also on u and v we can give a more
general description of the phenomena introduced in [XVGN17]. This kind of problem has gained
interests in the past due to the several applications that hydraulic fracture processes can find (as
in the field of gas extraction or excavation). In several context the problem of the control of the
evolution of cracks and/or fractures is a serious issue and that is where the model derived by
Xavier, VanGoethem and Novotny in [XVGN17] can be useful for applications. As we discussed in
[CVG17], further models can be recovered by exploiting the nonlinear potential F , as a plastics-slip
models or some sort of averaged Tresca yield model.

An interesting question at this point is: to what kind of fracture problem the above sequence
of energies converges to? With Nicholas Van Goethem we addressed it in a very general case. In
particular, in [CVG17] we are able to provide a Γ-convergence result on the space SBD2(Ω) ∩
L∞(Ω;Rn) for the energy

Fε(u, v) :=



∫
Ω

[
vAe(u) · e(u) +

ψ(v)

ε

]
dx

+

∫
Ω

F (x, e(u), v) dx if (u, v) ∈ Xε

+∞ otherwise

, (3.5)

where F is a suitable convex (even non linear) potential subject to a sublinear growth hypothesis
and ψ is a non increasing function such that ψ(1) = 0. Notice that the hydraulic fracture model is
recovered as soon as F (x,M, v) = p(x,M, v)tr (M). The limiting energy can be identified as

F(u, v) :=


Φ(u),

if u ∈ SBD2(Ω)
and v = 1 Ln-a.e. in Ω,

+∞ otherwise.

. (3.6)
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where

Φ(u) :=

∫
Ω

Ae(u) · e(u) dx+

∫
Ω

F (x, u, 1) dx

+ a

∫
Ju

√
A([u](z)� ν(z)) · ([u](z)� ν(z)) dHn−1(z)

+ bHn−1(Ju) +

∫
Ju

F∞(z, [u]� ν) dHn−1(z).

Here we have set

a = 2
√
αψ(0), b = 2

∫ 1

0

ψ(t) dt

and

F∞(z,M) := lim
t→+∞

F (z, tM, 0)− F (z, 0, 0)

t
for z ∈ Ju and M ∈Mn×n

sym .

In particular we were able to show the following theorem.

Theorem 3.1. The following assertion holds true.

a) For any (uε, vε) ∈ H1(Ω;Rn)× Vε such that uε → u, vε → v in L1 we have

lim inf
ε→0

Fε(uε, vε) ≥ F(u, v);

b) For any u ∈ SBD2(Ω) ∩ L∞(Ω;Rn) there exists a sequence {εk}k∈N decreasing to 0 and
(uεk , vεk) ∈ H1(Ω;Rn)× Vεk such that

uεk → u, vεk → 1 in L1, and lim
k→+∞

Fεk(uεk , vεk) = F(u, 1).

The tools developed by [Cha04], [Iur14], [CFI17], [CC17], [AT90], [FI14] [Fon89] and [Fon88]are
the starting point of our analysis.

We also underline that the analysis carried out in [Cri18] allows us to remove the L∞ bound in
the lim sup inequality and extend our Theorem to the whole SBD(Ω) ∩ L2(Ω;Rn).

4. Equilibria configurations for epitaxial crystal growth with adatoms (with
Riccardo Cristoferi and Laurent Dietrich) [CCD18]

Under the guidance of Irene Fonseca and Giovanni Leoni and together with two CMU post-docs,
Riccardo Cristoferi and Laurent Dietrich, we studied a time-dependent system of PDEs modeling
the evolution of a solid-vapour interface under the presence of an adatom density. The system of
equations has been derived firstly in [FG03] within the framework of configurational forces, and
formally it read as {

∂tu = ∆Σt
µ− V (uH + 1), on Σt

V = −ψ(u)H + µ(uH + 1), on Σt
(4.1)

where {Σt}t∈I is the family of interfaces representing the evolution of the material (typically the
top part of the boundary of a domain Ωt representing the bulk material as in Figure 4). Here
u(·, t) : Σt → R+ is the adatom density, ∆Σt

is the Laplace-Beltrami operator, V (x, t) is the
normal velocity to Σt at x ∈ Σt, H(x, t) is the mean curvature of Σt at x ∈ Σt, ψ is the surface free
energy, and µ = ψ′(u) is the chemical potential. This model arises as a refinement of the surface
diffusion model

V = ∆Σtµ,

with the introduction of an adatom density u on Σt and the mass constraint

|Ωt|+
∫

Σt

u(x) dHn−1(x) = constant in time

which do not exclude a priori that part of the material may become part of the adatoms and
conversely. In the paper of Burger [B+06] the author shows how to variationally recover (as a
gradient flow in a suitable topology) the model (4.1) starting from the energy

E(Ω, u) :=

∫
∂Ω

ψ(u) dHn−1(x) (4.2)
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Figure 4.1. The situation modeled by (4.1): a deposition of material Ωt on the bulk
with a solid-vapor interface Σt and an adatoms concentration on the top. The system
evolves by moving in the normal direction νΣt to Σt.

where Ω has finite volume, ∂Ω(= Σ the diffusing interface) has finite Hn−1 measure and ψ is a
convex, superlinear function such that ψ(x) > 1. In [RV06] the authors conjectured that the phase
field approximation, inspired by the Cahn-Hiliard approach,

Eε(φ, u) :=

∫
Rn

ψ(u)

(
ε

2
|∇φ|2 +

1

ε
W (φ)

)
dx (4.3)

should yield a system of PDEs (depending on ε) whose solutions converges to the solutions of
(4.1). In the above phase field approximation we ask that φ is a Sobolev function, u is a summable
function and W is a suitable potential. The authors also show formal convergence of the equations.
A serious issue in these kind of approximation is represented by the lower semi-continuity of the
underlying energy E(Ω, u) and one of the problem that immediately arises in dealing with the
energy (4.2) is that the natural topology, the one that gives compactness, does not guarantees any
kind of lower semi-continuity. In order to solve this problem and obtain an hint for what concern
the eventual limit of (4.3) we consider the energy (4.2) as an energy defined on the space S of
the couple (Ω, µ) where Ω is a set of finite perimeter and µ is a Radon measure concentrated on
∂∗Ω (a set contained in ∂Ω and coinciding with ∂Ω whenever ∂Ω is smooth). In this context µ
represents the adatom density. The natural topology in this space is the one induced by the L1

convergence in the variable Ω and the weak star convergence in the variable µ. By endowing the
space S with such a topology we are not only able to study critical points of E and the behavior of
the time-independent version of (4.1), but also to characterize the lower semi-continuous envelope
of E. Our main result concerning this characterization can be stated as follows.

Theorem 4.1. Let µ = uHn−1x∂∗Ω + µs, for any couple (Ω, µ), be the Radon-Nikodym decompo-
sition of µ. Then the functional

F (Ω, µ) =

∫
∂∗Ω

ψ(u) dHn−1(x) + Θµs(Rn)

is the lower semi-continuous envelope of E.
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Figure 4.2. By oscillating at a faster and faster frequency and with smaller and smaller
amplitude the perimeter increases and the sequence still converges in L1 to Ω (in this
case Ω stands for the unit ball or the plane). Due to the fact that ψ(x) > 1 this process
allows us to compensate an eventual loss of adatom density u on ∂Ω by simply increasing
the surface area. This concentration phenomena lead to a limiting couple that has energy
F < E.

In the above theorem ψ stands for the convex subadditive envelope of ψ and

Θ = lim
x→+∞

ψ̄(x)

x
.

Under the light of this new result we can infer now that the phase field approximation (4.3) might
actually not be the correct one for the sharp model (4.2). Indeed classical results lead us to say
that, if there is a Γ-limit (a particular notion of variational convergence) for the approximate energy
(4.3), then such a limit needs to be lower semicontinuous. In particular the functional F (·, ·) is
more likely to be the Γ-limit of Eε rather than E. This open to the possibility that the solution
vε of the gradient flows for the approximate energy Eε could converge to the gradient flow for the
energy F . The lack of semi-contuinuity is mostly due to concentration phenomena that take place
on the boundary of Ω (see picture 4). By exploiting this kind of behavior it is possible to produce
sequences (Ωk, µk) → (Ω, uHn−1x∂∗Ω) that approximates F : E(Ωk, µk) → F (Ω, u) < E(Ω, u),
called recovery sequence. It is not surprising, then, that the numerical simulation developed in
[SV08] shows features that mimic the behavior of the recovery sequences in the relaxation process:
the sequences follow the path that minimizes the energy.

Under the light of Theorem 4.1 we are now able to prove the the Γ-convergence of the energy
Eε (under the topology of the space S) to the energy F ). We expect that our future research
directions will lead us towards the understanding of the behavior (in ε) of the solutions of the
system of PDEs induced by Eε and to the short-time existence of solution for the system 4.1. We
would like to underline that, in this context, many techniques can be imported from the variational
framework in order to discuss issues such as existence and regularity of solutions. For instance we
can try to look for a gradient flow point of view as it has already been successfully implemented
by Fonseca, Fusco, Leoni and Morini for the treatment of surface diffusion-type models in various
frameworks (see [FFLM07],[FFLM12], [FFLM15]). Let us recall also that a work that contains
several new ideas in this sense is [FJM17] where the authors provides short-time existence for a
surface diffusion system of PDEs.

5. A sharp quantitative version of Hales’ isoperimetric honeycomb theorem (joint
work with Francesco Maggi - UT Texas at Austin) [CM16]

In 2001 Thomas Hales solved the hexagonal honeycomb conjecture, and established that among
all the partition of the plane in unit-area chambers the hexagonal tiling provides the partition with
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minimum local perimeter ([Hal01]). This results can be translated in an isoperimetric inequality
on the flat thorus (where the problem can be stated nicely). In particular, given a suitable flat
thorus T and any partition E of T in unit-area chambers, it holds that

P (E) ≥ P (H)

where H is the hexagonal honeycomb partition of T . By using a selection principle for planar
N -clusters, developed in [CLM14] following the scheme given in [CL12], we were able to prove the
sharp stability inequality

P (E) ≥ P (H)(1 + κα(H)2)

where α(·) is a suitable L1-type distance of E from H and k is a constant depending on T . Our
main result is the following theorem.

Theorem 5.1. There exists a positive constant κ depending on T such that

P (E) ≥ P (H)
{

1 + κα(E)2
}
, (5.1)

whenever E is a unit-area tiling of T and

α(E) = inf d(Ê , v +H)

where the minimization takes place among all v = (t
√

3`, s`), s, t ∈ [0, 1], and among all tilings Ê
obtained by setting Ê(h) = E(σ(h)) for a permutation σ of {1, ..., N}.

6. Equidistribution of the energy for an isoperimetric partition problem with
fixed boundary (with Giovanni Alberti - Università degli studi di Pisa)[Car16]

A conjecture due to Morgan and Heppes (see [HM05]) states that the global shape of perimeter
minimizer planar N -clusters having equal-volume chambers, suitably normalized must converge,
in the L1-sense, to a ball. The global shape should be intend as E(0)c, where E(0) is the external
chamber of the cluster E . So far no progress has been made in proving this conjecture and the
reason could lie in the difficulties arising when we try to understand in which sense the shape of
the internal chambers has an influence on the global shape of perimeter minimizers N -clusters. In
order to investigate the influence of the boundary on the internal structure of perimeter minimizers
N -clusters, it makes sense to consider an isoperimetric problem on planar N -cluster with fixed
boundary. Namely, for a fixed set Ω with finite perimeter we consider the quantity

ρ(N,Ω) := inf
E∈Cl(N,Ω)

{P (E)}, (6.1)

where the infimum is taken among all the N -clusters of Ω, to be precise:

Cl(N,Ω) :=

{
E planar N -cluster with |E(j)| = |Ω|

N
for j 6= 0 and E(0) = Ωc

}
. (6.2)

In order to better understand the behavior of the localized energy P (E ;Ql), where Ql ⊂⊂ Ω
is a square of edge-length l and E is a minimizing N -cluster for an open set Ω, we provide an
“equidistribution theorem” in the spirit of the one obtained by Alberti, Choksi e Otto in [ACO09]:

There exists a universal constant C such that for every open bounded set Ω, every E ∈ Cl(N,Ω)
minimizing N -cluster for Ω and every closed cube Q ⊂⊂ Ω “far enough” from the boundary and
“large enough with respect to the size of the chambers” the following holds:∣∣∣P (E ;Q)− |Q|P (H)

2

√
N

|Ω|

∣∣∣ ≤ CP (Q). (6.3)

where H denotes a unit-area regular hexagons.

From a qualitative point of view, estimate (6.3) gives us information about the average energy of

E inside the cube Q. If we divide both members of (6.3) by |Q||Ω|N , which represents the expected

number of chambers of E lying inside Q, we obtain∣∣∣P (E ;Q)
|Q|
|Ω|N

− P (H)

2

√
|Ω|
N

∣∣∣ ≤ CP (Q)

|Q|
|Ω|
N
.
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Note that P (H)
2

√
|Ω|
N is the average energy of a uniform grid of hexagons H having volume |Ω|N (and

thus perimeter P (H)
√
|Ω|
N ). The exact statement is the following.

Theorem 6.1. Let Ω be an open bounded set with Lipschitz boundary and 0 ≤ β < 1
2 be a positive

real number. Then there exist three positive constant η, λ, C depending only on β and on the shape
of Ω with the following property. For every cube Ql ⊂⊂ Ω with

d(∂Ql, ∂Ω) > η
√
|Ω|N− 1

6 , l ≥ λ
√
|Ω|N−β (6.4)

and for every indecomposable minimizing N -cluster E ∈ Cl(N,Ω) the following holds∣∣∣P (E ;Ql)−
P (H)

2
|Ql|

√
N

|Ω|

∣∣∣ ≤ CP (Ql)
3
2

(
N

|Ω|

) 1
4

. (6.5)

The previous statement refers to indecomposable minimizing N -clusters, which are those N -
clusters whose chambers are indecomposable. We are trying to remove this assumption. We
underline that under the stronger hypothesis of equi-boundedness of diameters of the chambers of
a perimeter minimizer N -cluster we can prove the following stronger theorem.

Theorem 6.2. Let Ω be an open and bounded set with finite perimeter. There exists a universal
constant C > 0 with the following property. For every µ ≥ diam(H), every closed cube Ql ⊂⊂ Ω
such that

d(∂Ql, ∂Ω) > 4µ

√
|Ω|
N
, l ≥ 6µ

√
|Ω|
N

(6.6)

and every E ∈ Cl(N,Ω) µ-bounded minimizing N -cluster the following holds:∣∣∣P (E ;Ql)− |Ql|
P (H)

2

√
N

|Ω|

∣∣∣ ≤ CP (Ql)µ. (6.7)

Here a µ-bounded minimizing N -cluster is perimeter minimizer N -cluster such that

max
i=1,...,N

{diam(E(i))} ≤ µ.

7. Cheeger N-clusters [Car17]

As a generalization of the classical Cheeger constant in my Ph.D. thesis we have considered the
Cheeger constant for N -clusters

HN (Ω) = inf

{
N∑
i=1

P (E(i))

|E(i)|

∣∣∣E ⊂⊂ Ω is an N -cluster

}
(7.1)

where Ω is an open bounded set. Any E ⊂ Ω attaining the above infimum is said to be a Cheeger
N -cluster of Ω. It can be shown that the existence of Cheeger N -cluster for any open bounded set
is always guaranteed. The quantity HN seems to represent the right object to study in order to
provide some non trivial lower bound on the optimal partition functional

Λ
(p)
N (Ω) := inf

{
N∑
i=1

λ
(p)
1 (E(i))

}
, (7.2)

where λ
(p)
1 denotes the first Dirichlet eigenvalue of the p-Laplacian, defined as

λ
(p)
1 (E) := inf

{∫
E

|∇u|p dx
∣∣∣ u ∈W 1,p

0 (E), ‖u‖Lp = 1

}
.

The infimum in (7.2) is taken over all the N -clusters E whose chambers are quasi-open sets of Ω.
The importance of the partition problem (7.2) relies on the fact that it provides a way to look
at the asymptotic behavior in N of the N -th Dirichlet eigenvalue of the classical Laplacian (the
2-Laplacian), as Caffarelli and Lin showed in [CL07]. In [CL07], Caffarelli and Lin prove that there
exist two constants C1 and C2 depending only on the dimension such that

C1
Λ

(2)
N (Ω)

N
≤ λ(2)

N (Ω) ≤ C2
Λ

(2)
N (Ω)

N
. (7.3)

9



The detailed study of λ
(2)
N (Ω) for N ≥ 2 seems to be a hard task (so far only the case N = 1, 2 are

known, see for instance [Hen06]), and this is why the asymptotic approach suggested by Caffarelli
and Lin could be a good way to look at the spectral problem. Caffarelli and Lin’s conjecture

(appearing in [CL07]) about the asymptotic behavior of Λ
(2)
N (Ω) in the planar case states that

Λ
(2)
N (Ω) =

N2

|Ω|
λ

(2)
1 (H) + o(N2),

where H denotes a unit-area regular hexagon. So far no progress has been made in proving the
conjecture, but numerical simulations (see [BBO09]) indicate that the conjecture could be true. We
note here that the constant HN is the analogous of the Cheeger constant in the optimal partition

problem for p-laplacian eigenvalues. Indeed we can always give a lower bound on Λ
(p)
N by making

use of Cheeger’s inequality and Jensen’s inequality:

Λ
(p)
N (Ω) ≥ 1

Np−1

(
HN (Ω)

p

)p
. (7.4)

By combining (7.4) with a comparison argument, we are also able to compute the limit as p goes
to 1 and obtain

lim
p→1

Λ
(p)
N (Ω) = HN (Ω). (7.5)

Thus, the constant HN seems to provide the suitable generalization of the Cheeger constant for

the study of Λ
(p)
N . We point out that the asymptotic behavior of HN is

h(B)
√
π√

|Ω|
≤ lim inf
N→+∞

HN (Ω)

N
3
2

≤ lim sup
N→+∞

HN (Ω)

N
3
2

≤ h(H)√
|Ω|

. (7.6)

In particular, the following is conjectured in [Car17]

lim
N→+∞

HN (Ω)

N
3
2

=
h(H)√
|Ω|

, (7.7)

which is just Caffarelli and Lin’s conjecture for the case p = 1. Let us underline that in [BFVV17]
relation (7.7) has been proven as a consequence of a general theorem. In particular the authors of
[BFVV17] built a strong link between the Pólya-Szegö (conjectured) inequality and the partition
problem for the Laplacian eigenvalues achieving a huge improvement in the direction of proving
the Caffarelli and Lin’s conjecture.

In the paper [Car17] we mainly focused on the general structure and regularity of Cheeger N -
clusters in order to lay down the basis for future investigations on HN . The statements involving
regularity are quite technical, and we just point out here that if E is a Cheeger N -cluster of Ω the
following (heuristical) statement holds.

Theorem. For every i = 1, . . . , N the reduced boundary of each chambers ∂∗E(i) ∩ Ω is a
C1,α−hypersurfaces (for every α ∈ (0, 1) ) that is relatively open inside ∂E(i) ∩ Ω and has piece-
wise constant mean curvature. Furthermore it is possible to characterize the singular set of a
Cheeger N -cluster E as a suitable collection of points with density zero for the external chamber

E(0) = Ω \
N⋃
i=1

E(i).

Moreover if the dimension is n = 2 the singular set is discrete and the chambers E(i) ⊂⊂ Ω are
indecomposable.

Figure 7 illustrates graphically the structures of the Cheeger N -clusters suggested by [?, Theorem
2.1, 2.3, 2.7].

Let me underline that an additional contribution in this field it has been given in collaboration
with Samuel Littig in [CL17] where, following the approach suggested in [CL07], we propose a
minimization problem equivalent to (7.1) which is stated for vector valued BV functions.
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Figure 7.1. An example of a possible Cheeger 6-cluster in dimension n = 2 suggested
by [Car17, Theorem 2.1, 2.3, 2.7]. The sets Σ(E(0); ∂Ω),Σ(E(0); Ω) are the singular sets.
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MATERIALS SCIENCE, NON LOCAL INTERACTIONS AND MINIMALITY:

BETWEEN PURE AND APPLIED MATH

M. CAROCCIA

Abstract. My research interests range across different areas of mathematical analysis and cal-
culus of variation, starting from geometric measure theory and partition problems, treated in my

Ph.D thesis, and ending on my recent analysis of systems of nonlinear PDEs having a gradient

flow structure. Common to all these project is that they can be treated by exploiting a varia-
tional approach and the direct method of calculus of variation.

I here propose two directions of investigation (explained in Section 1, 2) that requires all the
formalism and the techniques coming from Calculus of Variation to be addressed. I do stress the

fact that, even if the two paths of investigation are distinct and indeed treat different questions

and issues, the underlying instruments are the same. The two paths are thought to be followed
together contemporaneously. The idea is that having more than one direction of research is

keeping active my interest in more than one discipline and can open the doors to possible further
collaboration with a bigger network of scientists. I do also list in Section 3 some problems I am

dedicating to, that are not embedded in a bigger framework but that can be achieved with a

reasonable amount of effort in a short time, possibly opening to eventual generalization.

The first part, Section 1, concerning function of Bounded Deformation, is relative to the theory

of fractures and its way of being modeled in the recent years. The second part, Section 2, in-
stead treats the planar minimal clusters of the plane, that has several connection with models

in materials science from crystallization to the theory of grain boundaries evolution.
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1. Function of bounded deformation: beyond fracture models

Given a body Ω and a deformation u : Rn → Rn, the energy density of such a deformation,
in the regime of linear elasticity, is given by Ae(u) · e(u), where A : Rn → Mn×n

sym is a symmetric

matrix-valued map depending on the elastic properties of the material and e(u) = ∇u+∇ut

2 is the
symmetric part of the gradient of u (we refer to [Gou94] for a detailed justification of why we can
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assume such a behavior for the description of the deformation process). In particular, following the
approach suggested in [FM98], it is possible to model the evolution and the equilibria configuration
of a fractured body, starting from a deformation u ∈ BV (Ω;Rn), by associating it to a potential
energy of the type

F(u) :=

∫
Ω

Ae(u) · e(u) dx+

∫
Ju

k(x, u+, u−, ν(x)) dHn−1(x) (1.1)

where k is an energy density on the fracture that depends on the material as well (here the fracture,
or crack, is modeled by Ju). These models describe very well the fracturing behavior, indeed if at
a point x the external forces or the boundary conditions pushes the deformation to have a very
high elastic energy, then the system will try to collapse into a crack in order to decrease F(u).
The presence of just the symmetric part of the gradient in the energy leads us to adopt a space of
deformation slightly bigger than BV . In particular the natural space where to define these kind
of energies is the space of function of bounded deformation set to be, in analogy with the space of
BV functions, as the family of all the L1 function such that e(u) is defined in the distributional
sense. In particular, u ∈ BD(Ω) if u ∈ L1 and if exists a vector-valued Radon measure Eu such
that for all ϕ ∈ C∞c (Ω;Rn) with ‖ϕ‖∞ ≤ 1 it holds

n∑
j=1

∫
Ω

(e(ϕ))i,juj dx =

n∑
j=1

∫
Ω

ϕj(x) d(Eu)i,j(x), for all i = 1, . . . , n

As shown in [ACDM97], given a function u ∈ BD(Ω) it is possible to decompose the measure Eu
in three parts:

Eu = e(u)Ln + [u]� νHn−1xJu + Ecu

where e(u) is the density of the absolutely continuous part of Eu, Ju is the jump set of u, ν is a
unitary vector field normal to Ju (which is well defined since Ju is (n−1)−rectifiable), [u] = u+−u−
is defined Hn−1-a.e. on Ju and a� b := 1

2 (a⊗ b+ b⊗ a). If Ecu = 0 then u is said to be a function
of special bounded deformation u ∈ SBD(Ω). In this terms is clear that the energy defined in
(1.1) is still well defined for all u ∈ SBD(Ω). Compactness and semicontinuity, under reasonable
assumption on A and k, is guaranteed on this space thanks to the work of [BCDM98]. The
ideas in this part of the research project deals with some issues concerning energies defined on
BD(Ω), SBD(Ω) and the structure of such spaces.

1.0.1. State of art and main questions. The importance of a good approximation for energies of
the type (1.1) is crucial in terms of numerical simulations or in term of minimization processes.
One of the most known and used tools in this sense is the concept of Γ-convergence. In [FI14] it
has been proved that a good approximation for 1.1 is provided by

Fε(u, v) :=

∫
Ω

[
vAe(u) · e(u) +

1

ε
(1− v)2 + ε|∇v|2

]
dx

where u ∈ H1(Ω;Rn) represents the deformation, (is not anymore BD but is instead more regular)
and v ∈ W 1,∞(Ω; [0, 1]) is modeling the damage of the material (i.e. v = 1 at those points where
no damage is present and v = 0 in presence of fractures). As ε tends to 0 the enrgy of those
points where v 6= 1 is blowing up at a scale ε−1 forcing thus the damage to concentrate on an
Ln-negligible set. Several variants of the above energy has been analyzed mostly in the scalar case
(see for instance the pioneering work [AT90]). For example an approximation for a fluid driven
fracture process, including a term involving an external pressure p and the divergence of the de-
formation u to take into account the effects of an high-pressure fluid pumped into a crack and how
this contributes to the dinamic of the system, has appeared first in [XVGN17]. In collaboration
with Nicolas Van Goethem (Universidade de Lisboa) we were able to validate mathematically such
a model in [CVG17].

Consider now the inverse problem. Let Fε : X → R be a given family of functionals (here X is
any space of configurations such that X ↪→ SBD(Ω)) modeling a fracture problem and imagine that
the sharp energy F (if there exists one) capturing the behavior of Fε is not known. The parameter
ε can represent the scale of the phenomena or just a diffusive parameter (as in homogenization
processes). It is not hard to show that, under suitable assumption on Fε, it exists a (Γ)-limiting
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energy F : SBD(Ω) → R but, while the energies Fε comes naturally as integrals of some sort
of densities over suitable domain, it is in general not clear whether the limit object still has this
property or not. This is of clear importance in trying to characterize the energy F and in this
context the issues that arise naturally are:

(I) Can we find the energy densities of the limiting process? More precisely,
(Ia) is there any integral representation for an energy F : BD(Ω)→ R?
(Ib) what are the weakest hypothesis under which question (Ia) can be answered?

We recall that general theorems for integral representation have been developed in [DM83],
[BDM85] and lately in [BFM98] where a global approach is provided. The general theory of
the direct methods of Γ-convergence goes back instead to [DMM81]. In particular, the recent
work [CFI17a] deals with the issue of integral representation for functional on SBDp(Ω;R2). In
addressing question (Ia) for functionals defined over SBDp(Ω), instead of BD(Ω), we consider to
keep in mind the construction developed in [CCI17]. Recent theorems on the general method on
GSBD have been deeply treated in the papers [Cri18] and [CC18].

An additional question, to further push our comprehension of the role of this energies in fracture
mechanics is related to the differential operator e(u). In many cases, as, for example, the non-
interpenetrative models ∫

Ω

(
e(u)− 1

n
div(u)

)
dx

the bulk part of the elastic energy is modeled by different operator rather than e(u).
More in general, in the definition of the energy we can replace e(u) with some differential operator
L(u) and consider

FL(u) :=

∫
Ω

AL(u) · L(u) dx+

∫
Ω

k

(
x,

dLsu

d|Lsu|
(x)

)
d|Lsu|(x).

In this case, the space of configuration should be completely rethought (we refer to [BDG17] for a
detailed explanation of the space BV L(Ω;Rn) of function of bounded L−variation). In particular

(II) what happen if we replace e(u) with a differential operator L(u)? Is it physically mean-
ingful? Can we recover all the phase-field approximation Theorems, provided the space of
configuration is suitably adjusted?

(III) Under which assumption on L a structure theorem can be provided for the space BV L,
along the same line of the one provided for BV and BD?

We recall the work [BDG17] where functions of bounded L-variation are treated and we stress the
fact that very few things are known about this subject, making it of particular interest for further
investigation. To this extent, we can find particularly useful to keep in mind the work [CFI17b],
where the authors try to understand in which case an SBD function is also a BV function. Let us
stress that, differently form question (I) this is a relatively new point of view in the discipline of
fracture mechanics. In particular the current literature seems to present a lack on the treatment
of this point and the filling of such a lack (even in part) might be a precious contribution.

1.0.2. Work in progress - towards an answer to question I: Integral representation. In a recent
work [DPR16] due to De Philippis - Rindler the blow up of the singular part of the symmetric
gradient of a BD map is characterized. Moreover, the techniques contained in the celebrated work
[BFM98] seems to be the right tools to exploit such a structure theorem in order to give an answer
to question I). In such a paper the authors consider an energy F : BV (Ω) × A(Ω) → R+, where
A(Ω) denotes the open sets of Ω. Under suitable assumption on the behavior of F they show that
it is possible to give an integral representation of the type

F(u,A) :=

∫
A

f(x, u(x),∇u(x)) dx+

∫
A∩Ju

f(x, u+, u−, ν(x)) dHn−1(x)

+

∫
A

f∞

(
x, u(x),

dC(u)

d|C(u)|
(x)

)
d|C(u)| (1.2)

where C(u) denotes the cantor part of Du, f∞ is the recession function of f and f, g are functions
defined throughout a blow-up procedure. The work heavily rely, for what concerns the cantor
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Figure 2.1. Some examples of perimeter minimizers N -clusters for N = 2, 3 in dimen-
sion n = 2 and n = 3. The 2-clusters on the left are, respectively, the minimizer for
the problem (2.1) with equal-volume (equal-area) chambers m1 = m2 and when differ-
ent volumes m1 6= m2 have been assigned. The same situation is the central one, for
N = 3, while the right-hand picture is the perimeter minimizer 2-cluster for equal-volume
chambers in R3.

part C(u), on the rank-one property of BV function proven by Alberti in [Alb93]. The 2016
breakthrough in [DPR16] yields as a consequence, among a series of interesting facts, that

dEcu

d|Ecu|
(x) = a(x)� b(x)

where Ecu denotes the Cantor part of the distributional symmetric gradient. This fact opens the
door to an extension of the integral representation Theorem for energy on BD(Ω)×A(Ω) as (1.2).
It is worth noticing that such a Theorem has been obtained for energies defined on SBD in [ET01],
by exploiting the technique introduced in [BFM98]. The result contained in [ET01] is not taking
into account the Cantor part since there were no characterization available for the singular measure
at the time: gap that can now be filled due to the recent development in this field.

2. Planar minimal N-Clusters: grain boundaries as isoperimetric objects

Given a natural number N and m1, . . . ,mN real positive number we look for a family of N
essentially disjoint (disjoint up to a set of measure zero) set E = {E(1), . . . , E(N)} having volume
|E(i)| = mi and minimizing the total perimeter. Any family F = {F(1), . . . ,F(N)} of N essential
disjoint sets is also called an N -cluster and we sometimes refer to the set F(i) as the chambers
of the cluster. In order not to trivialize the problem, it is usually adopted the convention that
any common interface between two sets of the family must be counted once. In particular, the
perimeter of a N -cluster E is defined as

P (E) =

N∑
i=0

P (E(i))

2

where we are defining the external chamber E(0) to be

E(0) =

(
N⋃
i=1

E(i)

)c
.

With this notation, the multi-chamber isoperimetric problem (a natural generalization of the classi-
cal isoperimetric problem) consists in finding the minimizers (whenever they exists) for the infimum
problem:

γN (m1, . . . ,mN ) := inf {P (E) | |E(i)| = mi, E is an N -cluster} . (2.1)

The N -clusters E attaining a minimum in (2.1) for some values m1, . . . ,mN are called isoperimetric
N -clusters or perimeter minimizer N -clusters.

2.0.1. State of art and main questions. The existence and regularity of isoperimetric N -clusters
for any given volumes and in any ambient space dimension has been proven by Almgren in [Alm76]
(see also [Mag12]). Since the study of these objects for any fixed N turns out to be a very hard
task (so far the solution is only known for N = 2 in any dimension [FAB+93], [Rei08], for N = 3 in
dimension 2 [Wic02], and some recent progress has been made in dimension 2 for N = 4 [PT16], see
figure 2.0.1 for some example) in my Ph.D Thesis [Car16] together my advisors Giovanni Alberti
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and Francesco Maggi we tried to develop an asymptotic analysis in N of the problem (2.1) in
various frameworks. From the pioneering work of Fejes Toth [Tót64] and the more recent and
general one by Hales [Hal01] it is a well known fact that the hexagonal tiling provide the best way
to enclose and separate unit-area regions with the least amount of perimeter. As a consequence
of the results achieved in [CM16], in collaboration with Francesco Maggi, and in [Car16], together
with Giovanni Alberti as a part of my Ph.D thesis, it is readable that the interior chambers of a
perimeter minimizing planar N -clusters will converge (in average) in L1 to regular hexagons. In
the interests of a complete description of the behavior of planar minimal cluster EN it is useful
to focus our attention on the carriage of the external chamber EN (0) (or EN (0)c which makes no
difference). Concerning this question we have the following conjecture by Heppes and Morgan
appearing in [HM05].

Conjecture 2.1. Let {EN (0)}N∈N be a sequence of external chambers of perimeter minimizing

N -clusters EN having unit-area chambers. Then EN (0)c√
N
→ B in L1 where B is the unit-area ball.

An interesting way to approach this problem might be the study of the functional,

Gδ(E) := inf
{
P (E)

∣∣∣ E N-cluster with E(0)c ⊃ E, |E(i)| = δ
}
.

We realize immediately that Hales’ Theorem and a comparison argument say that

P (H)

2
|E| < Gδ(E) ≤ P (H)

2
|E|+ c

√
|E|√
δ
, (2.2)

so if we were able to compute

F := Γ− lim
δ→0+

√
δGδ,

F can provide the way to solve the conjecture. If F turns out to be a multiple of the perimeter
functional then the Heppes-Morgan conjecture can be proved by just observing that, whenever EN
is a unit-area perimeter-minimizing cluster, we immediately have that EN (0)c√

N
is a minimum for

G 1
N

. Thus this fact will imply that any accumulation point E of
{
EN (0)c√

N

}
is a minimizer for the

perimeter, which means: E is a ball.

Unfortunately the computation of F is really an hard question. Moreover there is a good chance
that in this framework we are not taking into account the important fact that the Γ-limit could
be strictly related to the behavior of the interior chambers. Even if we assume that in some part

Figure 2.2. How to define, in a very natural way, an orientation for an hexagonal tiling.

of EN (0)c the interior chambers are converging to some hexagonal tilings there is no reasons such
tilings should have the same, orientation in the sense of figure 2.2. It could happen that in a
certain cube Q1 ⊂ EN (0)c there is a tiling with an orientation v and far away in some other cube
Q2 ⊂ EN (0)c we see another hexagonal tiling with a different orientation w 6= v. If this is the case,
somewhere in the cluster the following problem is solved.
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I) Given two grid H1,H2 with different orientation, it is possible to find a unit-area cluster
F having the following property

I.1) G = H1(0)c ∪ F(0)c ∪H2(0)c is connected (indecomposable)

I.2) defined G = {H1,H2,F} then P (G;Q) ≈ P (H)

2
|Q|+ c

√
N.

In other word given two grid having different orientation, can we find a binding F connecting them
and with local perimeter close to the ground state, up to a lower order term (see figure 2.3)? With
a positive answer to this question in hands, we would be able to prove the conjecture by showing
that the gamma limit is actually a multiple of the perimeter with a constructive proof.
An additional step forward towards the comprension would be to link such orientations (that might
also not be clearly defined for general N -cluster) to the perimeter length. In particular

II) Is there a way to assign an orientation to almost-minimizing N -cluster that is linked to the
perimeter in the following sense: given uN : R2 → R2 the map catching the orientation of
EN and given that

√
P (EN )N → P (H)/2 then uN → uH where uH : R2 → R2 is a map

catching the orientation of an hexagonal tiling?

Let me point out that, a priori, the sequence
{
EN (0)c√

N

}
could have more than one limit point

and that they can be different depending on the subsequence we are looking at. For example if Nk
is the sequence of the hexagonal numbers (the numbers for which a big hexagon of hexagons can
be built) it seems reasonable to presume that the eventual limit in this case is H:

ENk
(0)c√
Nk

→ H.

Observe that for ENk
the rigidity of the interior chambers is in force and only one orientation is

present in ENk
(0)c.

A recent work along the same line depicted here has been recently releases [DLNP18], even if in a
slightly different context.

Figure 2.3. Is there a way to connect with a cluster having unit-area chambers
two hexagonal grid with different orientation without increase the local perimeter
too much??
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2.0.2. Work in progress - Compactness of orientation from perimeter bounds (with Giovanni Alberti
and Giacomo Del Nin). With Giovanni Alberti and Giacomo del Nin we started to discuss several
ideas that might provide an answer to question II. By starting from a tiling of the Torus with the
same topology of the hexagonal one (chambers of six edges and singularities made by three edges
joining together into a point) we can define a map in the following way. Given a chamber EN (i)
we first define ui : ∂EN (i)→ ∂H that maps the boundary on the boundary (here H is a reference
hexagon) and then we consider its harmonic extension defined on the whole chamber. We then
glue together all the maps. The interesting fact is that the following estimate on the map u can
be provided ∫

T
d(∇u(x), SO(2))2 dx ≤ C[P (EN )− P (H)]

for a universal constant C that does not depend on N . The rigidity Theorem by Friesecke, James
and Müller [FJM02] ensures then that, for some rotation R ∈ SO(2),

‖∇u−R‖L2 ≤ C[P (EN )− P (H)].

This means that we can give an estimate on the gradient of the map in term of the perimeter
deficit. This is just the beginning of our work and the real challenge would be now to develop such
construction also on tilings with other and more complicated topology. An interesting connection
with dislocation theory (and also linear elasticity) seems to arise from this approach when we treat
topological defects (pentagon, octagon etc.) of tilings. Let us recall that a similar approach has
been succesfully adopted in [The06] to treat a crystallization model.

3. Additional ongoing projects

3.0.1. Relaxation of energies with densities (with Riccardo Cristoferi). In the work [CCD18] the
energy

E(Ω, u) :=

∫
∂Ω

ψ(u) dHn−1(x) (3.1)

is studied. As a consequence of such work we achieve the Γ-convergence of the energies

Eε(φ, u) :=

∫
Rn

ψ(u)

(
ε

2
|∇φ|2 +

1

ε
W (φ)

)
dx

(under the topology considered on the space of configuration) to the relaxation of E. A general
question that arises under the light of this recent approach proposed in [CCD18] is the following.
Let F : BV (Ω)×A(Ω)→ R+ be an energy such that F(φ; ·) := µφ(·) is a Radon measure for every
φ ∈ BV (Ω) and such that F(·;A) is lower semi-continuous with respect to the L1 convergence.
Consider then GF : BV (Ω)×Mb(Ω) → R, where Mb(Ω) is the family of all the Radon measures
on Ω, be defined as

GF (φ, µ)


∫

Ω

ψ (u(x)) dµφ(x) if µ = uµφ, u ∈ L1(Ω, µφ)

+∞ otherwise.

(3.2)

for a function ψ. Notice that this process allows us to consider a density u weighted on those part of
Ω where φ puts non trivial energy. It represents a generalization of the case F(1E , A) := P (E;A)
yielding (3.1). Along the line of the work [CCD18] we can ask what is the relaxation of GF under
the L1 × w∗ topology. How the association F 7→ GF behaves under Γ-convergence? Namely, if Fε
Γ-converges to F then, can we deduce that GFε Γ-converges to G?

Together with Riccardo Cristoferi we are trying to address such question starting from the general
approach suggested by the general method for relaxation contained in [BFM98]. In particular we
are studying the cell problem

m((φ, ν);Q) := inf

{∫
Q

ψ(u) dµv(x)
∣∣∣ v ∈ BV (Q), v = φ on ∂Q
u ∈ L1(Q,µv), uµv(Q) = ν(Q).

}
.
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as a starting point in order to relax (3.2), and in particular the comprhension of the quantity

lim
ε→0

m((φ, ν);Q(x0, ε)

µφ(Q(x0, ε))

is a crucial step in running the technique introduced in [BFM98]. Let us underline that such a
general approach seems to be a novelty for what concerns energy with two variable of the above
shapes. Several energies, beyond the ones treated in [RV06], can be defined starting from (3.2).

3.0.2. Regularity for the fractional isoperimetric function (with Matteo Rinaldi and Riccardo Scala).
In collaboration with Matteo Rinaldi, a former CMU Ph.D. student, and Riccardo Scala a post-doc
at the University of Lisbon, we are studying the regularity of the fractional isoperimetric function.
The fractional perimeter has received increased attention from the mathematical community since
it has been introduce by Caffarelli, Roquejoffre and Savin in [CRS10] in 2010. Given a generic set
E and s ∈ (0, 1), the s-fractional perimeter of E can be defined as

Ps(E) :=

∫
Rn

∫
Rn

|1E(x)− 1E(y)|
|x− y|n+s

dx dy =

∫
E

∫
Ec

1

|x− y|n+s
dx dy, (3.3)

namely the fractional s-Sobolev semi-norm of the characteristic function 1E of E. In particular,
given an open smooth set Ω and m ∈ (0, |Ω|), it is possible to consider the volume constrained
fractional isoperimetric function:

IΩ(m; s) := inf {Ps(E) | |E| = m, E ⊂⊂ Ω} . (3.4)

Our principal aim is to study the regularity of the function IΩ(m; s) for a fixed s ∈ (0, 1) with
respect to the variable m. In the classical case it has been shown that if Ω is C2,σ then the
isoperimetric function is C1 almost everywhere on (0, |Ω|), [MR15, Remark 4.4]. The authors used
this result to estimate the rate of convergence of a phase field approximation of the non local Allen-
Cahn equation. Regularity of the classical isoperimetric function has been used also in [LM16]. The
recent tools delevoped in [CG10] provide a way to deduce the C1,γ regularity for the minimizers
of problem 3.4 which is a first step toward proving the regularity of the function IΩ(m; s). Let me
underline that a useful set of tools to approach this problem is contained in the discussion of the
non-local capillarity problem treated in [MV17].

3.0.3. Average distance problem (with Xin Yang Lu and Ihsan Topaloglu). Together with doctor
Lu and professor Topaloglu we are trying to understand the minimizers of an attractive-repulsive
energy of the type

AD(E) :=

∫
E×E

[
1

p
|x− y|p − 1

q
|x− y|−q

]
dxdy.

The function u(r) := 1
pr
p − 1

q r
−q is strictly convex in r and this is enough (even if is not straight-

forward) to obtain that by performing a Steiner symmetrization the energy decreases, argument
that applies to any energy whose integrand is the composition of a convex function with |x − y|.
We are currently trying to show that the balls are the only minimizers among all the Borel sets
with fixed volume. This problem seems to be well studied in dimension n = 2 for u(r) = |r| see
[Dun97] where also the biological motivation is discussed) and seems that no results are available
in bigger dimensions. Let us also recall that the similar energy for Radon measure

E(µ) :=

∫
Rn×Rn

W (x− y) dµ(x) dµ(y)

for particular potential W it has been widely studied, see for example [BCLR13] and [CFP17].

3.0.4. On the contact surface of Cheeger sets (with Gian Paolo Leonardi - Università degli studi di
Modena). Given a smooth open set Ω the Cheeger constant of Ω (introduced first in [Che70]) is
defined to be

h(Ω) = inf

{
P (F )

|F |

∣∣∣ F ⊂⊂ Ω

}
,

where P (F ) denotes the distributional perimeter of the set (see [Mag12]) and |F | is the Lebesgue

measure of F . Any set F ⊆ Ω such that P (F )
|F | = h(Ω) is called a Cheeger set of Ω. It is well-

known that for any Cheeger set F of Ω the interior boundary ∂F ∩A is a C1,α-hypersurface with

constant mean curvature H = h(E)
n−1 . We refer to [Leo15], [Par11], for two exhaustive surveys on
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the Cheeger problem. In [LP14] the authors show that F meets the boundary of Ω tangentially
and νE(x) = νΩ(x) for any x ∈ ∂F ∩ ∂Ω, but no results are known about the size of the contact
set ∂F ∩ ∂Ω. The question we are currently addressing is under which hypothesis is it possible
to infer that Hn−1(∂F ∩ ∂Ω) > 0 for a given Cheeger set F of Ω. The strategy is, under some
suitable assumption, to try to derive a contradiction on the shape of an eventual Cheeger set such
that Hn−1(∂F ∩ ∂Ω) = 0 by exploiting Alexandrov’s Theorem [Ale62]. This question is linked to
the results describing the structure of Cheeger N -Clusters [Car17] that I have treated in my Ph.D.
thesis.

4. Objectives

One of the biggest challenge I would like to face throughout this project is to get closer and
build a strong link with the community of applied mathematician and engineers. I think that, in
order to push forward my comprehension on these topics and with the aim of further extending
the results here conjectured it is of crucial importance, nonetheless incredibly stimulating for me,
to talk with people from different fields. My actual ongoing projects shows that I am capable of
working with several co-authors in a constructive and efficient way.

I would really like to start a dialogue with numerical analyst in order to explore from a com-
putational point of view several ideas and conjectured that arise naturally when looking at the
problem exposed in Sections 1 and 2.

For what concern results about the first two section, instead, in the next two year I expect the
following.

a) Question (I) in Subsection 1.0.1 is already on a good road with my co-authors (see 1.0.2)
and we expect to find sharp (and physically relevant) hypothesis that can guarantee an
integral representation for functional F : BD(Ω;Rn)→ R;

b) Concerning question (II) the aim is to extend the phase-field approximation to possibly
more general differential operator, but is not clear what hypothesis might be needed on
L in order to import the existing tools. We do think that some interesting cases (as the
deviatoric operator e(·)− 1/ndiv(·)) could be treated;

c) I expect to understand in deep what are the conditions under which question (III) can be
treated. This might represent the hardest question and in fact, we do not really know how
delicate it is. As pointed out in [BDG17], even classical instrument as the existence of L1

traces, might fail already in dimension n = 2;
d) I do not think that a binding of the type requested in question I) in 2.0.1 does exist and I

expect to work in this direction in order to prove some sort of rigidity Theorem for almost
minimal tilings;

e) We expect to give a positive answer to question II) in 2.0.1 and to define a candidate
Γ-limit on the space of configuration;

The Section 3 instead does not contains problem that can be inserted in a global picture yet and
we would like to build around them a more solid framework in the next two years. Such problems
are all in progress and we expect to close them in short time.

5. Methodology

My previous experience at CMU, collaborating with Riccardo Cristoferi and Laurent Dietrich
on a problem from materials science gave me all the tools I need to treat the Γ-convergence and
approximation questions stated here. In particular in [CCD18], we dealt with a functional defined
over (we refer also to the attachment for additional details) we dealt with the relaxation of a
functional defined over BV (Ω; {0, 1})×M where M is the space of positive Radon measure. The
techniques we studied and the background we developed, since relaxation and integral represen-
tation are interconnected issues, gave me the required skills to consider more general problems as
the one stated in question (I), (II) and (III) of Section 1.0.1.

Additional methods in my backrgound come from the work I did with Dejan Slêpcev and An-
tonin Chambolle on a topic involving a discrete version of the Mumford-Shah functional which has
the same structure of the fracture models proposed here, but in the scalar case (the work is still in
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preparation). The techniques developed involves, as shown in [GTS16], an interesting application
of optimal transportation theory that seems to be particularly appropriate for numerical approxi-
mation and analysis of energies defined on cloud points.

The work I am doing here at the Universidade de Ciências on the model proposed in [XVGN17],
together with Nicolas Van Goethem, put me close to all the question concerning BD and SBD
functions giving me a strong picture of all the main techniques currently available, combined with
a solid background in geometric measure theory and phase-field approximation.
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