Nanoparticles: Chemistry and Applications

A.Y. 2018/2019
Lesson for
6
Max ECTS
48
Overall hours
SSD
CHIM/06
Language
Italian
Learning objectives
The objective of the course is to provide the student with the most important knowledge related to basic principles of nanoparticles and their applications.
Skills acquired by the students at the end of the course are the knowledge of synthetic methods of inorganic nanoparticles and their functionalization for application in the biomedical field.

Course structure and Syllabus

Active edition
Yes
Responsible
CHIM/06 - ORGANIC CHEMISTRY - University credits: 6
Lessons: 48 hours
Syllabus
Goals
The objective of the course is to provide the student with the most important knowledge related to basic principles of nanoparticles and their applications.

acquired skills
Skills acquired by the students at the end of the course are the knowledge of synthetic methods of inorganic nanoparticles and their functionalization for application in the biomedical field.

Course content
Part I
Basic concepts on the nanoparticles, their physico-chemical properties and how these latter can be modulated changing nanoparticles size will be presented. In particular, the synthetic procedures (using both top-down and bottom-up approaches) for the preparation of different nanoparticle classes (metallic, semiconductors and quantum dots) will be described. The peculiar properties of the different types of nanoparticles (absorption, emission, modulation of the nanosized semiconductors band gap etc.) will be described. The most relevant strategies for nanoparticles stabilization in colloidal suspension, for the choice of the capping material as a function of the biomedical use of the nano-object, will be presented, as well as the techniques most commonly employed for their characterization in the solid state (TEM, SEM and AFM) and in suspension (DLS and Z-Potential). Some recent applications will be discussed. TOTAL 24 h.

Part II
Basic principles of superparamagnetic nanoparticles are illustrated: in particular, definitions, characteristics and potential applications are presented. In detail, iron oxide nanoparticles, such as maghemite and magnetite are discussed in terms of magnetic characteristics, synthesis and stabilization methods. The most important methods of functionalization of nanoparticles surface with organic molecules and biomolecules are presented. Basic principles of biomedical applications are also described: 1] in diagnostics, through the use of nanoparticles as contrast agents for magnetic resonance imaging and 2] in therapy, thanks to their ability to give hyperthermia, drug transport, vector for cells uptake. In the last part of the course basic principles of Halloysite nanotubes are described, as innovative nanosystems for potential applications in diagnostics and therapy. TOTAL 24h

Suggested prerequisites
General chemistry, Organic Chemistry I

Reference material
Slides of both parts of the course used during lessons will be provided to the students through the Ariel web-site. Students can communicate with the teacher through e-mail, or rather, making an appointment to take advantage of the weekly reception time.

Assessment method
The examination consists in a written test for the two course parts. The written test contains three open questions on the program dealing with Part I (on the different synthetic methods of inorganic nanoparticles, the analytical techniques employed in the characterization of nanoparticle objects, and applications in the biomedical field) and three open questions on the Part II of the course (on the methodologies widely described during the course, for the conjugation of organic or bio-molecules to nanoparticles and/or nanotubes). The two marks (it is needed that the both are higher or at least equal to 18/30) will contribute to the mean of the final mark. During each academic year a number of at least 7 exams will be set, in the ordinary exam sessions.

Language of instruction
Italian

Attendance Policy:
Highly recommended

Mode of teaching:
traditional

Website: https://dmaggioninca.ariel.ctu.unimi.it/v5/home/Default.aspx
Lesson period
Second semester
Lesson period
Second semester
Assessment methods
Esame
Assessment result
voto verbalizzato in trentesimi