

TO MAGNIFICO RETTORE OF UNIVERSITA' DEGLI STUDI DI MILANO CODE 5564

I the undersigned asks to participate in the public selection, for qualifications and examinations, for the awarding of a type A post-doc fellowship

Thomas Pfeil CURRICULUM VITAE

PERSONAL INFORMATION

Surname	Pfeil	
Name	Thomas	
Date of birth	22.10.1994	

PRESENT OCCUPATION

Appointment	Structure
Ph.D. student	University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 Munich, Germany

EDUCATION AND TRAINING

LDOCATION AND ITEMINING	EDUCATION AND TRAINING			
Degree	Course of studies	University	year of achievement of the degree	
Specialization	-	-	-	
PhD	Physics	Ludwig- Maximilians- Universität München	expected: 10/2023	
Master	Physics	Heidelberg University	2020	
Bachelor	Physics	Heidelberg University	2017	
Degree of medical specialization	-	-	-	
Degree of European specialization	-	-	-	
Other	-	-	-	

REGISTRATION IN PROFESSIONAL ASSOCIATIONS

Date registration	of	Association	City
-		-	-

FOREIGN LANGUAGES

Languages	level of knowledge
German	Mother tongue
English	Proficient (C1)
French	Basic (A1)
Spanish	Basic (A1)

AWARDS, ACKNOWLEDGEMENTS, SCHOLARSHIPS

Year	Description of award
-	<u>-</u>

TRAINING OR RESEARCH ACTIVITY

Technical Skills:

- Programming with Python, Fortran, C, C++
- Experience using the finite difference (magneto)hydrodynamics code PLUTO
- Experience using the ISAAC, VERA, and COBRA computer clusters hosted by the Max Planck Society at the Max Planck Computing and Data Facility in Garching, Munich

Research Experience:

I have been working on numerical simulations of protoplanetary disks with the focus on hydrodynamic turbulence and dust evolution since 2017, resulting in the publication of 2 first-author papers in peer-reviewed journals.

I am also working on the application of machine learning methods within this field. The results of this work were recently published as a conference preceding (NeurIPS 2022).

<u>Teaching Experience:</u>

- Astrophysics I (lecture held by Prof. Tilman Birnstiel at LMU Munich)
 - Tutoring of undergraduate students/exercise groups
- Astrophysics of the Solar System (seminar organized by Prof. Tilman Birnstiel at LMU Munich)
 - Mentoring of undergraduate students

PROJECT ACTIVITY

Year	Project
2020-2023	Dust Evolution in Multi-Dimensional Hydrodynamic Simulations of Protoplanetary Disks (Ph.D. project)
2022	A Neural Network Subgrid Model of the Early Stages of Planet Formation (2022 Flatiron Machine Learning X Science Summer School)
2019-2021	High Resolution Simulations of Purely Hydrodynamic Turbulence and Flow Structure Formation in Protoplanetary Disks (M.Sc. thesis project)
2017	Stability Constraints for Protoplanetary Disks (B.Sc. thesis project)

PATENTS		
	-	

CONGRESSES AND SEMINARS

Date	Title	Place
05/2022	Poster Presentation: "Dust Evolution for 3D Hydrodynamic Simulations of Protoplanetary Disks	Exoplanets 4, Las Vegas, USA
03/2022	Invited Talk: "Dust Evolution for 1D, 2D, (and 3D) Hydrodynamics Simulations of Protoplanetary Disks	Yale Exoplanets & Stars Seminar (online)
10/2021	Invited Talk: "Turbulence, Sub Structure (and Dust Evolution) in Protoplanetary Disks with the Vertical Shear Instability"	Max Planck Institute for Extraterrestrial Physics, Munich, Germany
03/2021	Invited Talk: "Turbulence, Sub Structure, and Dust Dynamics in Protoplanetary Disks with the Vertical Shear Instability"	Cambridge Exoplanet Seminar (online)
11/2020	Poster Presentation: "The 'Sandwich Mode' of the Vertical Shear Instability" at: Virtual Workshop Planetesimal formation meeting	University of Copenhagen, (online)

12/2019

Poster Presentation: "Turbulence in Protoplanetary Disk 'Dead Zones' is caused by Hydrodynamic Instabilities" at: Workshop Universality: Turbulence Across Vast Scales Flatiron Institute, New York City, USA

PUBLICATIONS

Books

Klahr, Hubert, **Thomas Pfeil**, and Andreas Schreiber (Nov. 2018). "Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation". In: Handbook of Exoplanets. Springer International Publishing, pp. 1-36. doi: 10.1007/978-3-319-55333-7_138

Articles in journals

Manger, Natascha, **Thomas Pfeil**, and Hubert Klahr (Dec. 2021). "High-resolution parameter study of the vertical shear instability - II: dependence on temperature gradient and cooling time". In: Monthly Notices of the Royal Astronomical Society 508.4, pp. 5402-5409. doi: 10.1093/mnras/stab2599

Pfeil, Thomas and Hubert Klahr (July 2021). "The Sandwich Mode for Vertical Shear Instability in Protoplanetary Disks". In: The Astrophysical Journal 915.2, 130, p. 130. doi: 10.3847/1538-4357/ac0054

Pfeil, Thomas and Hubert Klahr (Feb. 2019). "Mapping the Conditions for Hydrodynamic Instability on Steady-State Accretion Models of Protoplanetary Disks". In: The Astrophysical Journal 871.2, 150, p. 150. doi: 10.3847/1538-4357/aaf962.

Congress proceedings

Pfeil, Thomas, Miles Cranmer, Shirley Ho, Phil Armitage, Tilman Birnstiel, and Hubert Klahr (2022). "A Neural Network Subgrid Model of the Early Stages of Planet Formation". In: 36th Conference on Neural Information Processing Systems. Accepted at the Workshop on Machine Learning for Physical Sciences

OTHER INFORMATION

References:

Prof. Tilman Birnstiel, Ludwig-Maximilians-Universität, Munich, Germany.
 E-Mail: <u>til.birnstiel@lmu.de</u>

• Prof. H. Hubertus Klahr, Max Planck Institute for Astronomy, Heidelberg, Germany.

E-Mail: <u>klahr@mpia.de</u>

Prof. Philip J. Armitage, CCA, Flatiron Institute, New York City, USA.

E-Mail: parmitage@flatironinstitute.org

Declarations given in the present curriculum must be considered released according to art. 46 and 47 of DPR n. 445/2000.

The present curriculum does not contain confidential and legal information according to art. 4, paragraph 1, points d) and e) of D.Lgs. 30.06.2003 n. 196.

Thomas Mil

Place and date: Munich, 15.01.2023

SIGNATURE