

TO MAGNIFICO RETTORE OF UNIVERSITA' DEGLI STUDI DI MILANO

ID CODE 5676

I the undersigned asks to participate in the public selection, for qualifications and examinations, for the awarding of a type B - PNRR fellowship at **Dipartimento di Scienze Farmaceutiche**

Scientist- in - charge: Prof.ssa Elisabetta Vegeto

Lien, Hong Tran CURRICULUM VITAE

PERSONAL INFORMATION

Surname	Tran Hong
Name	Lien

PRESENT OCCUPATION

Appointment	Structure
Postdoctoral reseacher	Bioscience Department, University of Milan

EDUCATION AND TRAINING

Degree	Course of studies	University	year of achievement of the degree
PhD	Life science	Kyungpook National University	08/2020
Master	Life science	Kyungpook National University	08/2017

FOREIGN LANGUAGES

Languages	level of knowledge	
English	C1	

AWARDS, ACKNOWLEDGEMENTS, SCHOLARSHIPS

Year	Description of award
01-06/2022	Grants for foreign and Italian citizens living abroad awarded by the Italian government
2015-2018	KNU International Graduate Scholarship (KINGS)

UNIVERSITÀ DEGLI STUDI DI MILANO

PROJECT ACTIVITY

Year	Project
07/2022-	Postdoctoral researcher at Bioscience department, University of Milan
present	Project: "SOUP – Signaling the Organelle Unfolded Protein Response"
	Investigating the molecular details of newly discover chloroplast and mitochondria unfolded protein response (UPR) pathway in Arabidopsis in abiotic stress, upon the accumulation of misfolded protein in the two organelles.
01/2022- 06/2022	Postdoctoral researcher at Bioscience department, University of Milan granted by MAECI
	Project: "SOUP – Signaling the Organelle Unfolded Protein Response"
09/2020- 12/2021	Postdoctoral researcher at School of Life Science and Biotechnology department, Kyungpook National University
	Project: Overexpressing gene osCHLH into the rice plant to increase the iron deficiency resistance
	To test stress resistance of transgenic rice plants to Fe deficiency, phenotype of wild type (WT) and AtCHLH-expressing transgenic rice were compared under Fe-sufficient and -deficient conditions by measuring growth parameters, chlorophyll content, and photosynthetic efficiency. Examining how porphyrin levels are regulated to overcome Fe deficiency stress conditions. And how plants regulate Fe homeostasis and Fe translocation during Fe deficiency by analyzing expression profiles of genes involved in Fe transporter and transcript factor.
09/2017-	Research in Doctoral program at School of Life Science, Kyungpook National University
08/2020	Project: Overexpressing gene osCHLH into the rice plant to increase the iron deficiency resistance
	Created the homozygous overexpressing gene <i>osCHLH</i> in rice plants. The effect of overexpressing osCHLH in the porphyrin metabolites, porphyrin-involving gene expression, Mg chelatase enzyme activity were examined. The phenotype of transgenic plant under different nutrient conditions was investigated.
01/2018-	Research in Doctoral program at School of Life Science, Kyungpook National University
09/2019	Responses in transgenic rice (Oryza sativa) expressing <i>Bradyrhizobium japonicum</i> Fe-chelatase (BjFeCh) after treatment with acifluorfen (AF), which is known as protoporphyrinogen oxidase's inhibitor.
01/2016-	Research in Master & Doctoral program at School of Life Science, Kyungpook National University
09/2017	Project: "Effect of norflurazon and oxyfluorfen on porphyrin biosynthesis and carotenoid biosynthesis in rice plant"
	Examining the porphyrin biosynthesis and carotenoid biosynthesis in rice plant treated by norflurazon and oxyfluorfen.
9/2015- 12/2016	Research in Master program at School of Life Science, Kyungpook National University
	Protect: "The effects of light quality on growth characteristics and porphyrin biosynthesis of rice seedlings"
	Measure the growth characteristic plant height, biomass in rice seedling under specific wavelengths of LED. Investigated the metabolic regulation of the porphyrin biosynthetic pathway and the relation between plant growth and porphyrin biosynthesis in plant in the different light quality.

CONGRESSES AND SEMINARS

Date	Title	Place
04/11/2019-	The 17th International Symposium on Rice	Taipei, Taiwan
06/11/2019	Functional Genomics (ISRFG2019)	
28/11/2018-	The 41st annual meeting of the Molecular	Yokohama, Japan
30/11/2018	Biology Society of Japan	
06/42/2047	C D: 2047 C	W
06/12/2017-	ConBio2017 Consortium of Biological science 2017	Kyoto, Japan
09/12/2017	2017	
30/11/2016-	The 39th annual meeting of the Molecular	Yokohama, Japan
2/12/2016	Biology Society of Japan	

Articles in reviews

Lien Hong Tran¹, Dong-gi Lee¹, Sunyo Jung (2021). Light quality-dependent regulation of photoprotection and antioxidant properties in rice seedlings grown under different light-emitting diodes. PHOTOSYNTHETICA 59 (1): 12-22, 2021

Bao Quoc Tran¹, **Lien Hong Tran¹**, So-Jin Kim, Sunyo Jung (2019). Altered regulation of porphyrin biosynthesis and protective responses to acifluorfen-induced photodynamic stress in transgenic rice expressing *Bradyrhizobium japonicum* Fe-chelatase. Pesticide Biochemistry and Physiology, Vol 159, Pages 1-8.

Park Jun Heum¹, **Lien Hong Tran**, Sunyo Jung (2017). Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways. Front. Plant Sci. 8:1992.

Park Jun Heum, **Lien Hong Tran**, Sunyo Jung (2017). A protoporphyrinogen oxidase gene expression influences responses of transgenic rice to oxyfluorfen. Biol Plant 61, 659–666.

Lien Hong Tran, Sunyo Jung (2017). Effects of Light-Emitting Diode Irradiation on Growth Characteristics and Regulation of Porphyrin Biosynthesis in Rice Seedlings. Int. J. Mol. Sci. 2017, 18(3), 641.

Lien Hong Tran¹, Jin-Gil Kim, Sunyo Jung (2023). Expression of the Arabidopsis Mg-chelatase H subunit alleviates iron deficiency-induced stress in transgenic rice. Front. Plant Sci. (Accepted)

Declarations given in the present curriculum must be considered released according to art. 46 and 47 of DPR n. 445/2000.

The present curriculum does not contain confidential and legal information according to art. 4, paragraph 1, points d) and e) of D.Lgs. 30.06.2003 n. 196.

Please note that CV WILL BE PUBLISHED on the University website and It is recommended that personal and sensitive data should not be included. This template is realized to satisfy the need of publication without personal and sensitive data.

Please DO NOT SIGN this form.

Place and date: Milano, 28/02/2023