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Research and teaching statement

1 Introduction to the derivation of the Boltzmann equation

1.1 From the beginning of kinetic theory to the formal derivation of the Boltz-
mann equation

Kinetic theory finds its origins in the works of Bernoulli [4], who sought from 1738 to describe gases
by studying the movements of their elementary components. An important step is crossed by Maxwell
([36], [37]) when he obtained in 1867 the expression of the velocity distribution of a gas at thermal
equilibrium: the celebrated Maxwellian function. Inspired by this work, Boltzmann investigated the
general case, and obtained the equation for the evolution of the particle distribution of a gas, out of
thermodynamic equilibrium [7]. Boltzmann studied the evolution of the following quantity:

f:f(tax’v)a (1)

which represents the number of particles of the fluid that is considered (or its density, up to renormal-
ize), lying at time ¢, at a position that belongs to x 4+ dz, and moving with a velocity that belongs to
v + dv, where dx and dv are two elementary volumes. Such an equation, depending on the variables
t, x and v, is called a kinetic equation.

Let us describe with more details the approach that allowed Boltzmann to obtain his equations (we
refer to [53] for more details), which is instructive and exhibit the main difficulties that one encounters
when one study the Boltzmann equation.

Firstly, if we consider a very large number of particles, which evolve according to Newton’s laws in
Euclidean space R? (d > 2) and which are not subject to any force (inertial movement), then it is
clear that the particle density satisfies the free transport equation:

o f(t,x,v)+v-Vof(t,z,v) =0, (2)

Of course, this naive model oversimplifies the dynamics of the particles. If we now want to take particle
interactions into account, we can describe the system using the hard sphere model: let us assume that
the particles are spheres of the same radius and mass, moving at constant speed when they are not in
contact, and collide elastically when they collide. More precisely, we will assume here that momentum
and kinetic energy are conserved during collisions. These conservation laws mean that there exists
w € S such that:

{:’ = v—((v—v) ww, (3)

L= et (=) w)w,

and in the case of the specular reflection (that is, in the case which corresponds to the physical collision
between two billiard balls), the physical choice consists in taking:

— iz (@

w— x|’

where 1 and 9 are the respective positions, at the time of collision, of the two spheres involves in
such a collision. The unitary vector w is called the impact parameter, which is, in the case of the hard
spheres, orientated along the line joining the centers of the two colliding particles.

In order to take into account the collisions, that are also able to modify the quantity f(¢,z,v), the
Boltzmann equation has then to be rewritten as follows:

Of +v-Vuf =Q, (5)



where @ is the collision term. We will assume that the effects of collisions are localized in time and
space, that is to say, only particles close to the position = at time t are likely to modify the velocities
of the particles which are found at time ¢ in the volume z + dz (this is a fundamental difference from
the models behind other kinetic equations, such as the Vlasov equation, for which particles interact
via gravitational or electrostatic, potentials, over long distances). Therefore, we obtain:

Q(ta .T,U) =Q (S(ta x)) (t,a:,v), (6)

where S described the system of particles, locally at time ¢, in the neighbourhood of z. Let us assume
now that the gas is dilute, that is, with a very low density. In this case, binary collisions are much
more likely than any other type of collisions involving more than three particles. As a result, @ will
depend only on the density f2) of the pairs of particles of the system:

FAE, x1, 01, 2, v2) (7)

describes the probability to find, at time ¢, a particle lying at the position 71 € x1 + dx; and with the
velocity 17 € vy +dw1, as well as another particle lying at To € x9 + dxs with velocity U9 € vy +dve. By
taking into account the conserved quantities, and by separating the quantities which imply a particle
at speed v before or after the collision (decomposition of the collision term in the gain term and the
loss term), we can write:

atf +uv- vaﬁf = / / |:B(LL),’U,, U;)f(Q)(t,ﬁ,U/,LE, U;) - B(w,v,v*)f(Q)(t,x,v,x,v*)] dwdv*’
weSd—1/y, eRd
(8)

where B(w,v,vy) is the collision kernel, which is the density of probability describing how likely
a collision, involving two particles with respective pre-collisional velocities v and v, colliding with
impact parameter w, can take place. In the case of the hard spheres (as well as for other models), we
see that

B(w,v,vs) = B(w, v, v),), 9)
because in the present case we have
B(w,v,v:) = |w - (vs = v)]. (10)

This property is called microreversibility. Furthermore, by Galilean invariance of the laws of evolution
of the particles, we find:

B(w,v,vs) = B(Jvx — v|,cosb), (11)
where
cosf =w - ﬂi:g, (12)

Finally, if we assume that two colliding particles are uncorrelated (that is, if we assume that they did
not collide with each other in the past, and that we cannot connect them with a series of collisions
which occurred in the past involving other particles of the system), then we have the tensorization of
the 2-particle density :

FAW zv,2,0,) = fta,0) ftzv) et Oz z,0l) = ft,z,0)f(tx,0). (13)

This hypothesis is called molecular chaos, or Stoffzahlansatz.
We obtain then the Boltzmann equation (1872, [7]) in its general form:

Of +0-Vaf = QU f) = / / Blv —ve,w) [f'f — J1.] dwdv., (14)
weSd—1 Jy, eRd
with f = f(tax7v)7 f* = f(tvxvv*)v f/ = f(t,x,v’) et fx/< = f(t,x,vi).
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1.2 Properties of the Boltzmann equation

The Boltzmann equation (14) has proven to be an extremely powerful tool. Furthermore, if we define
entropy as the functional:

H)() = / I (f(t, 2, 0)) f(t,, v)dzdo, (15)
one can show that
d
SHN® <0, (16)

with equality if and only if f is an equilibrium of the Boltzmann equation, that is to say a stationary
solution, which must then necessarily have the form:

f(t,x,v) = p(t,x) exp (—a(t, x)|v — u(t, :E)\Z) , (17)

where p,a : [0,T] x RY — Ry et u: [0,7] x R — R9. A function of the form (17) is called a local
Mazwellian.

The inequality (16) is the key result of Boltzmann’s H-theorem (1872, [7]). This result implies that
the solutions of the Boltzmann equation evolve irreversibly, tending to minimize the (mathematical)
entropy (15). We obtain a description of the asymptotic behavior of the solutions of the Boltzmann
equation: we expect these solutions to converge towards the equilibria, and moreover in certain cases
of boundary domains, under certain boundary conditions, we can show that only Maxwellians of the
form

m(t, x,v) = poexp (—ap|v|?) (18)

(that is, with p and a constant, and u equal to zero in (17)) are solutions of the Boltzmann equation.
Such a function, of the form (18), is called a global Mazwellian. We can therefore conjecture that the
solutions of the Boltzmann equation converge towards the unique global Maxwellian associated with
each of these solutions.

This irreversible behavior, the first of its kind to have been identified among the kinetic equations,
corresponds to the evolution of fluids that we can observe on a daily basis at our scale: there exists an
arrow of time, the fluids having tendency to evolve in such a way that they minimize their entropy.
The Boltzmann equation is an extremely relevant object for modeling highly diluted gases. In par-
ticular, we can cite the application of the Boltzmann equation to aerospace: the atmospheric reentry
trajectories of spacecrafts (such as the space shuttle) are calculated using the Boltzmann equation.
Indeed, the upper layers of the atmosphere constitute an example of highly diluted gas.

But the Boltzmann equation is relevant not only in the context of dilute gases, since it has also close
links with fluid mechanics. Indeed, in the case of a solution of the Boltzmann equation close to a
Maxwellian (17), one can develop the functions p, a and u in series and study the perturbations of
these functions. We then find, depending on the hypotheses, that these perturbations verify the Euler
equation, compressible or incompressible, or the Navier-Stokes system. The study of these connections
is called hydrodynamic limits. ([25], [45]).

1.3 Loschmidt’s and Zermelo’s paradoxes, discussion of the model

As we have seen, the properties of the Boltzmann equation are rich and deep. In particular, the
existence of the arrow of time for solutions of the Boltzmann equation has serious consequences.
However, this result raises questions. Indeed, if we reconsider the formal derivation, presented in
Section 1.1, we see that our starting point was the system of hard spheres. However, the system
of hard spheres is a system subject to Newton’s laws only, which is a conservative framework. In

11



particular, these systems are time reversible, that is to say, given a trajectory of a system of hard
spheres given over a time interval [0, 7], considering the evolution of this system backwards, from time
T, still produces a trajectory which verifies Newton’s equations. There is no arrow of time in this
case. As for the Boltzmann equation, we have seen that the entropy (15) is strictly decreasing during
the evolution of the solutions. It is then impossible to reverse the direction of time and find another
solution.

So, how is it possible that a system, reversible at the microscopic scale, can lead to obtain a system at
the macroscopic scale, which is itself irreversible? This questioning led Loschmidt [35], then Zermelo
[55] to formulate paradoxes which a priori undermine the validity of Boltzmann’s equation. We will
in fact see that these paradoxes are only apparent.

1.4 Granular gases : kinetic theory for dissipative particle systems

A model for inelastic collisions. The theory of the Boltzmann equation concerns gases whose
elementary components have conservative dynamics: the kinetic energy is conserved at each collision,
and we recover this property at the macroscopic scale for the solutions of the Boltzmann equation. We
can also consider systems composed of particles which interact via inelastic collisions, where a fraction
of the kinetic energy of the particles which collide is lost (transformation into heat, deformation of the
particles, emission of photons, etc.). For example, we can assume that the particles evolve according
to the model of inelastic hard spheres. As for the elastic case, we assume that the particles have
inertial motion when they are at a sufficient distance from each other, and we modify the collision law
(3) in the following way:

(1+r)
Vo= v— (v —vy)  w)w,
2., (19)
v, = v*—i—(l—; )(( — V) W)W

r € [0, 1] is called the restitution coefficient, it quantifies the degree of inelasticity of collisions between
particles. For r = 1, we recover the elastic case (3), and for » = 0, we have the perfectly inelastic
case. In particular, in dimension d = 1, when r = 0 and two particles collide, the particles dissipate
completely their relative velocity, so that they remain attached after a collision. For this reason, the
case r = 0 is sometimes called the case of sticky particles.

A model with varied and surprising applications. These models have a gigantic field of ap-
plication, since sand, wheat in a silo, snow, or on other scales interstellar dust or the components of
Saturn’s rings can be described with the help of an inelastic particle model.

Systems composed of a large number of inelastic particles are called granular gases, for a reason that
we will develop below. These systems exhibit fascinating behaviors, halfway between solids and liquids
([32]), and they are still largely misunderstood.

From particle systems to kinetic equations. In the same way that we formally obtained the
Boltzmann equation from a microscopic-scale description of matter, we can write a kinetic equation to
describe systems composed of a very large number of inelastic particles. We then obtain the inelastic
Boltzmann equation. We can consult for example [9], and [12] for a more mathematical approach to
the subject.

One of the typical phenomena observed when studying granular gases using kinetic equations is the
so-called homogeneous cooling. Unlike the elastic case, the particles dissipate kinetic energy, and the
gas loses temperature (Haff’s law [28], [9]).

Then comes the moment when the gas has lost too much energy, and is no longer able to fill the space
homogeneously: we then observe the spontaneous formation of inhomogeneity in the gas. The particles
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tend to concentrate in smaller and smaller regions, in increasingly dense clouds, almost completely
deserting certain parts of the previously occupied space ([9], [43]). This tendency to form agglomerates
gave its name to the fluids we describe: granular gases.

The question of the derivation, the problem of inelastic collapse. While we know a proof
of the rigorous derivation of the classical Boltzmann equation (described in detail in Section 2), at
least for short times and in certain particular situations, the question of the rigorous derivation of the
kinetic equations of granular gases is still largely open.

In the elastic case, a preliminary result to the rigorous derivation of the Boltzmann equation consists
in proving that the system of hard spheres has a well-defined dynamics. More precisely, it is possible
to show that this dynamics is globally well-defined, for almost every initial configuration: this is
Alexander’s theorem ([1], [24]).

In the inelastic case, to our knowledge no such result has been obtained. In fact, there is a phenomenon,
typical of the collision model (19), called the inelastic collapse, which can occur even with a system
composed of a very small number of particles. A system of particles undergoes inelastic collapse
when an infinite number of collisions occur in a finite time. Such a phenomenon, first observed
numerically, then rigorously studied in dimension 1 ([46], [5], [38], [17], [27], [16],[3], and more recently
[15] and [31]), was subsequently observed in dimension 2 [39], then studied [56], but remains still
largely misunderstood. In particular, even the case of a system of four particles in dimension 1 has
not yet revealed all its mysteries ([16], [31]). It should be noted that the case of the dimension 1 is
not anecdotal, since, when an inelastic collapse takes place in any dimension, the particles involved
in the collisions seem to arrange themselves into structures which have the form of chains, rather flat
and almost linear ([39], [43]).

The phenomenon of inelastic collapse is therefore a major obstruction to obtain an Alexander theorem
for inelastic particles. Such a theorem concerning the well-posed character of the particle dynamics
of a granular gas constitutes itself a necessary and fundamental step in order to obtain a rigorous
derivation of the inelastic kinetic equations.

2 Rigorous derivation, Boltzmann-Grad limit and Lanford’s theo-
rem
We will see in this part how to rigorously derive the Boltzmann equation from a system of elastic hard

spheres. The idea is to represent the gas, which is a continuum, by a system composed of a very large
number of particles, while maintaining a very low density.

2.1 BBGKY hierarchy and Boltzmann-Grad limit

The starting point consists of describing precisely the evolution of a system of hard spheres, with the
appropriate tools from statistical physics. In particular, we will use the distribution function of the
system, and study its marginals. For more details, please the reader may refer to [13], [14] et [24].

The BBGKY hierarchy. For a system of N hard spheres of radius £/2 > 0, we start with defining
the configuration of the system: this is the vector Zy in which the positions and velocities of each
particles are collected. We have:

ZN:(.%'1,U1,...,.1‘N,UN)€R2dN, (20)

where x; and v; represent respectively the position and velocity of the particle ¢. Since the particles
cannot overlap, the vector Zy belongs to the phase space D5, defined as:

DJEV:{ZNGRW/W#J} \xi—xj|>€}- (21)
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We now define the distribution function fy of the system: fy(t, Zy) represents the probability of
finding, at time ¢, the first particle in x1 + dx1, moving at speed w; € v1 + dvi, the second in z9 + dxs
and moving at speed wy € v9 4+ dvg, and so on.

By definition, particles have inertial motion within the phase space D%, so that:

N
VZn €Dy,  Oifn+ > vi-Vafn =0. (22)
=1

The equation (22) is called the Liouville equation, that we complete with the following boundary
conditions:

fN(t,.Z'l,’L)l,...,iL'i,’L)i,.. . ,xj,vj,... ,xN,vN)

= fN(t,fL‘l,’Ul, e ,l’i,’U;, e ,xj,vé-, e ,:UN,UN) (23)

when |z; — z;| = e, with v} and vé» denoting the post-collisional velocities computed for the pair i, j
from the pre-collisional velocities v;, vj, given by the relation (3).

Now, we will focus on the typical behavior of a subgroup of s particles of the system. Such information
is encoded in the s-th marginal f](\f) of the distribution function fy, defined as:

f](\f) (t, Zs) = /2d(N : fN(t, Zs, Ts41,VUst1y+--3 LN, 'UN)]IDf\,dxs—&-ld'Us—f—l ...drydup. (24)
R —s

In the same way that the distribution function fy satisfies the Liouville equation in the phase space

with N particles Dy, the s-th marginal f ](\}9) (with 1 < s < N — 1) verifies the equation :

OfN + Y v Va fS = CNa g (25)
=1

in the phase space with s particles D%, where the term Cé\;’il s+ which involves the (s 4+ 1)-th

marginal f ](\‘;H), is defined as:

s

CEL T =3 (N = s)et ! /S /R w (e —w) FUD@, Zy, 2y + ew, vey1 )dwdvg 1. (26)

i=1 Vs4+1

The family of equations (25), (26) for 1 < s < N — 1, completed by the Liouville equation (22),
constitutes the BBGKY hierarchy ( [6], [8], [33], [54]). It describes using the evolution of the particle
system with the help of a PDE.

The Boltzmann-Grad limit. We consider the limit N — +oo for the equations (25), (26) of the
BBGKY hierarchy. Grad was the first to observe that, to obtain a meaningful limit, one must have:

Net™t — 1. (27)

This is the Boltzmann-Grad limit ([26], [13], [14], [24]). The volume occupied by the particles tends
to 0 as N tends to infinity. For this reason, the Boltzmann-Grad limit is also called sometimes the low
density ltmit. We naturally find the hypothesis of strong dilution of gases which we seek to describe
with the Boltzmann equation.

Finally, for the first marginal f ](Vl ), we see that in the Boltzmann-Grad limit N — 400, Ne?~! =1, and
in the case where the second marginal f® is tensorized, the first marginal of the BBGKY hierarchy
is a (formal) solution of the Boltzmann equation.

We therefore have a clear plan for the rigorous derivation of the Boltzmann equation: we must study
the convergence of the first marginal of the BBGKY hierarchy in the Boltzmann-Grad limit.
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The Boltzmann hierarchy and the plan for the rigorous derivation. Let us proceed to a
final preparatory step before carrying out the rigorous derivation of the Boltzmann equation. We first
introduce the formal limit of the BBGKY hierarchy, as follows. We consider the following sequence of
equations (infinite, this time), for all s € N*:

8tf(s) (t, Zs) + ZUi ' VCsz(S) (t, Zs) s+1f (s+1) (tv ZS) (28)

=1

with

S
Ss+1f S+1 (t,ZS) = Z/Sdl /Rd [w : (Us-l—l _vi)]+ f(s+1)<t7x17v17"'7xi7v£7"‘7xi7vg+1)
i=1 w

Vg41

— f(SH)(t,ZS,xi,verl) dwdvgiy.  (29)
This infinite hierarchy is called the Boltzmann hierarchy.

The rigorous study of the Boltzmann-Grad limit of the BBGKY hierarchy is then carried out in
two steps following Lanford’s approach ([34], [13], [14], later revisited and completed in [24], and
detailed in [19]).

2.2 Rigorous derivation I: solving the hierarchies.

Rewriting the hierarchies as a fixed point problem. First, we transform the two hierarchies
(25), (26) and (28), (29) into two similar fixed point problems. We rewrite (formally, for the moment)
the hierarchies in their time-integrated form, which provides (in the case of the Boltzmann hierarchy):

PO =T+ [T Vi (30)

where 7;8’0 is the backwards transport operator (hard sphere transport in the case of the BBGKY
hierarchy, and free transport for the Boltzmann hierarchy), defined as follows:

(7°59) (1. 20) = £ (6. 120(2)) (31)

We denoted by Tts’O(Z s) the image of a configuration Z4 by the free transport, transported for a time
t. Similarly, we will denote by 7;°(Z;) the image of the configuration by the transport of hard spheres
of radius /2.

We now introduce the following functional spaces in order to solve the equations (30). We will
present here only the spaces concerning the Boltzmann hierarchy. The spaces concerning the BBGKY
hierarchy are defined in a similar way, but present difficulties which will be discussed below (see Section
3.1, which presents the article [20], where these spaces are discussed in a precise way).

Definition 2.1 (Norm ||, 3, spaces X, 3). Let > 0 be a strictly positive number and s be a strictly
positive integer. For any measurable function f() : R2% — R, we define the norm:

£ exp< zw)

and we introduce the spaces X, g as the set of measurable functions f (5) . R245 — R with a norm |- | 5,8
finite, that is:

FO)]5 = supess (32)

Zs€R2ds

= {f(s) : R¥ 5 R measurable / |f®)]. ;5 < —i—oo}. (33)
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These first spaces will be used to control the decay at infinity of the marginals. Each marginal f (s)
will belong to a space X 3. We mentioned that we solve hierarchies by seeing them as fixed point
problems. However, the equations of the hierarchies are not closed: the equation (28) involves the
s-th and (s+1)-th marginals. We will therefore consider the marginals together, grouped into a single
vector. In other words, we will not try to solve the equations (30) independently for all s, but we will
rather consider sequences ( f (s))s , which must belong to a Banach space to be defined, so that each
coordinate f(*) is a solution of the s-th equation (30). It is then appropriate to “link” these marginals,
by defining a norm on these vector spaces, each component of which is a marginal.

Definition 2.2 (Norm |-[|g ,, space Xg ). Let 8 > 0 be a strictly positive number and p be a real
number. For any sequence F' = (f(s))s>1 of functions () of X, 8, we define the norm:

Fll,, = QIR , 34
1715, = sup (1l expsn)) (34)

and the space Xz, as the set of sequences of functions F' = ( f(s))s>1 such that for all s > 1, f(®)

belongs to the space X 3, and such that the sequence (hg\sf))l<s<N has a finite || 5 , norm, that is:

Xy = {F = (1) 21 € (Xos) 1 / 1P, < +o0}.

Finding a stable functional space under the action of the collision operator. One of the
major difficulties that arise when trying to solve hierarchies as a fixed point problem is to find an
invariant space under the action of the collision term. In particular, if we consider the expression (29),
we see that if we assume that the (s + 1)-th marginal &+ is bounded by a Gaussian profile of the
form:

5 s+1
\f(5+1)(Zs+1)| < Cexp <—2 Z |Ui]2> ’ (35)
i=1

it is not possible a priori to deduce such a bound for the s-th marginal f(¥), since the collision kernel
w - (vs+1 — v;) induces a loss of decay at infinity. We can then proceed in two different ways:

e agsign a different Gaussian weight 8 = 35 for each marginal, but then we face the fact that we
cannot consider the marginals obtained as tensorizations of the first marginal (which excludes
the case of equilibrium, and is therefore not relevant here),

e or consider a Gaussian weight 8 = [3(t), uniform in s, but decreasing in time. This approach
is justified by the fact that hierarchies rewritten as the fixed point problem (30) have been
integrated in time, so that taking advantage of this additional time variable, and with the help
of appropriate weights, we can hope to obtain invariant spaces under the action of the collision
operator, integrated in time.

These points are discussed in [24], and taken up in detail and clarified in [19], and [20].
It is therefore necessary to consider more sophisticated spaces and norms. This is the purpose of the
following definition.

Definition 2.3 (Norm ||-|| 5 ;:, space ig ;)+ For any strictly positive real T' > 0, any strictly positive

and strictly decreasing function 3, any strictly decreasing function fi, both defined on [0, 77, and any
function F : [0,T] = Useom Xswaw b F(t) = (f(s)(t))821 such that F(t) TR for all
t € [0, 7], we define

N O]
’H B,it OStET () B(#),a(t)
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and we define the space Xﬁﬂ as the set of such functions F with a norm ||| 55 that is finite, and
left-continuous in time in the following sense:

Vte0,T], Vs >1, lim [f¥t) - f(s)(u)]sg(t) =0. (36)
u—t— ’

The spaces introduced above are Banach spaces.
We obtain then the first important result in order to derive the Boltzmann equation.

Theorem 2.4 (Nishida 1977 [41], Ukai 2000 [52], Gallagher, Saint-Raymond, Texier 2014 [24]). Let
Bo be a strictly positive number, and po be a real number. B
Then there exists a time T = T(Bo, no) > 0, a strictly positive and strictly decreasing function (3 :
[0,T] = R and a strictly decreasing function i : [0,T] — R such that

B(0) = Bo,  i(0) = po, (37)

and such that for any integer N, in the Boltzmann-Grad limit Ne?~! = 1, there exists for any pair of
initial data Fno € XN gyu0 and Fo € Xo gy @ um'que pair of solutions, to the BBGKY hierarchy,

respectively to the Boltzmann hierarchy, in the spaces X AR respectively X, B

Let us note that the existence time given in the theorem is explicit, but depends directly on the size of
the initial data. This phenomenon is appears also in the methods for solving the Boltzmann equation
with fixed point methods, in the absence of the possibility of taking into account the cancellations
which take place between the loss term and the gain term of the collision term of the Boltzmann
equation.

Furthermore, this time is typically extremely small. We can only carry out the rigorous derivation of
the Boltzmann equation on this time interval [0, 7.

2.3 Rigorous derivation II: convergence of the BBGKY hierarchy

Now that we found solutions of the BBGKY and Boltzmann hierarchies, over the same time interval
[0, 7], and this, uniformly in the number of particles N of the system of hard spheres, we will be able
to study the sequence of solutions (Fi)ys; of the BBGKY hierarchy, in the Boltzmann-Grad limit.

From the explicit formula to the decomposition in elementary terms. In our case, the
result of Theorem 2.4 is based on Banach’s fixed point theorem. This theorem is constructive, and we
can obtain an explicit expression of the solutions of the hierarchies, with the Duhamel formulas. The
solutions Fy and F' are then described only in terms of the initial data Fy o and Fy. More precisely,
if we introduce the notations:

INEf(S+1) / —U ss—‘,—llTSJrl Sf S ( u, )du (38>
for the BBGKY hierarchy, and
t
206 = [ 700 (T ) du (39)
0

for the Boltzmann hierarchy, then the composition of such integrated in time transport-collision op-
erators, defined according to the formulae:

N,e s+k N, s+1 € s+1 ec 5+2, €
Is ,Ss+k—1 / T t1V's s+1 / T s+1 s+27;

/ T T I ) dt ety (40)
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and

k) +1 0 +1, 0 +2, O
5 s—i—k 1f (s+k) / T s s+1 S / Ts s+1 s+2TS
/ T 00 ok TR PR (4, ) dty . dtp dty (41)

respectively for the BBGKY and Boltzmann hierarchies, we can then rewrite the solutions of the
hierarchies given by Theorem 2.4 in the following form, for example for the Boltzmann hierarchy:

et (7?9,0f(§8) Z S (s Tk, of(s+k:))< t, )) . (42)

s>1

Interpretation in terms of pseudo-trajectories. Let us now present Lanford’s last argument
[34], which allows us to conclude concerning the convergence of the marginals, through a geometric
interpretation of the expressions (42) of the solutions of the hierarchies.

First, let us observe that each integrated transport-collision operator Z; . is naturally decomposed
as follows: the collision operators C; . given by (26) and (29) are sums of s integrals, each of which
decomposes into a gain term (sign + ) and a loss term (—). We are therefore naturally led to introduce
the elementary integrated transport-collision operators:

S

t
€O fD = / Ry e CIDE TS S AN AN [ s O M C)
0

].1:1 +7.71 —J1
which provides the following decomposition:

L= Y, FE)I0s Yoo Y (T ) (44)

i k2
1<ji<s o 1< <s+h—1 ik

+1 :tk
The solutions of the hierarchies are then rewritten (here, in the case of the Boltzmann hierarchy, but
a similar decomposition also holds for the BBGKY hierarchy):

(Ts 1+ Z >0 () ()T o (we T Ofth) )) ; (45)

>1
k=1 Jy, My Ty, My 5=

where Jr, = (j1,...,Jk), Mr = (£1,...,%%), and s < j; < s+1—1. The expression (45) of the solution
F is called its decomposition in elementary terms.

These are the elementary terms that we will be able to interpret geometrically. Let us consider an
example. In the formula (45), the term obtained for arbitrary k = 1, m; = —, and s, j1 = j, the

operator Ioh ss (U Tt Ofos+1 ) is written explicitly:
space—2mm(ﬁ’7)

/Ot /w / . [w- (vs1 — (T2, (Zs)V)]

O(SH) (Ts+1’0 (Ttsfgt(Zs)v (Ttsfgt(zs))X’ja vst1)) dw dvgyy dty. (46)

—t1

Let us now interpret the formula (46), step by step. This interpretation is presented using Figure
1. The left column contains repetitions of (46), where we highlight the respective terms which are
represented geometrically in the right column. In this second column, we will represent the time axis
horizontally, and for each abscissa, a copy of the space R? is represented vertically (in a schematic
way, since we only have one dimension available...). The position of the different particles, at a given
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Figure 1: Construction, step by step, of a pseudo-trajectory.

time, is therefore represented by a cloud of points placed at different heights.

We start from a configuration Z of s particles (in red) at time ¢, which we transport (with backwards
transport) until time ¢; (in blue). This time ¢; is the integration variable of the integral used to define
the integrated transport-collision operator. In the third step, we choose the particle 7, represented in
burgundy at its position at time ¢;, with its velocity. We add a (s + 1)-th particle to the system at
time t1, at this same position, but with a velocity vsy1, which is an integration variable of the collision
operator (29). We finally transport this new system of s + 1 particles to time 0, and we obtain the
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final configuration in green.
These different configurations are the variables which appear in the expression of the elementary term
(46) written explicitly.

This geometric construction, which has the shape of a tree, is called a pseudo-trajectory.

Lanford’s observation consists in noting that, on the one hand, for two identical elementary terms,
that is, associated to the same parameters k, Ji and My, but associated with the two hierarchies, the
construction process provides very similar pseudo-trajectories.

Dy

) 4820) = 45

Figure 2: Comparison of the pseudo-trajectories of the two hierarchies, associated to the same ele-
mentary term.

On the other hand, these pseudo-trajectories, that is, the configurations in which we evaluate the
initial distributions fy to define the elementary terms, are in fact the only difference between the
elementary terms of the BBGKY hierarchy and of the Boltzmann hierarchy. In Figure 2, we represented
the pseudo-trajectories of the two hierarchies, associated with the same elementary term. The final
argument to conclude is clear: the pointwise convergence of the pseudo-trajectories will lead to the
convergence of the elementary terms by the dominated convergence theorem, and the term-by-term
convergence of the elements of the decomposition (45) completes the proof of the derivation. This
pointwise convergence of the pseudo-trajectories is then easily obtained, since the difference between
the pseudo-trajectories of the two hierarchies associated with the same elementary term is directly
linked to the size € of the hard spheres, which tends towards 0 in the Boltzmann-Grad limit.
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The case of the recollisions. Nevertheless, a final obstacle appears and prevents to conclude.
There is a fundamental difference between the pseudo-trajectories of the two hierarchies, which is due
to the different transports used in the two cases.

In the case of the Boltzmann hierarchy, we use the free transport to write the “mild” form (30).
In the case of the BBGKY hierarchy, we use the transport of hard spheres. In the first case, the
particles cannot collide, while in the second case their velocities can be suddenly changed because of
these collisions. Thus, two pseudo-trajectories, associated with the same elementary term, and with
the same initial data and particle adjunction conditions, can be radically different between the two
hierarchies. This phenomenon, illustrated in Figure 3, is called a recollision.

Controlling recollisions, which is a geometric problem, is a step, certainly technical, but very important
to conclude. In the article [24], Gallagher, Saint-Raymond and Texier show that only an error term,
small in the limit (and which corresponds to a subset of the domain of integration in the integrals
which define the integrated in time transport-collision operators (26), (29), (38), (39)), is associated
with pseudo-trajectories which present recollisions. They then obtain the following result, which
constitutes a rigorous derivation of the Boltzmann equation (for the hard sphere collision kernel, but
also for interactions via short-range, vanishing potentials in the same article) in the Boltzmann-Grad
limit , in the whole Euclidean space R? or in the torus T¢. As a consequence of the explicit control of
recollisions, they also obtain an explicit convergence rate of the first marginal of a system of N hard
spheres towards the associated solution of the Boltzmann equation.

Theorem 2.5 (Lanford 1975 [34], Gallagher, Saint-Raymond, Texier 2014 [24]). Let
fo:R¥ 5 R, (47)

be a continuous probability density such that:

for a certain number 5 > 0.

Then, in the Boltzmann-Grad limit N — +oo0, Ne@™1 = 1, f](Vl) converges to the solution f of the
Boltzmann equation with collision kernel b(v,w) = (v - w)4, with fo as initial data, in the following
sense. For any compact set K C R?, and for any sufficiently regular test function ¢ : R* — R:

@) [ e = P 0)dv

fo(z,v)exp <§\1)|2> < 400 (48)

oo (R2d)

— 0.
N——+oco
L([0,T]xRY)

If in addition fo is a Lipschitz function, the convergence rate is at most of order O(g%), with

d+1

3 Contributions to the problem of the derivation of the Boltzmann
equation

It is on the problem of the rigorous derivation of the Boltzmann equation, described in detail in Section
2, that I began my research, first during the thesis, then during my first post-doctorate under the
supervision of Chiara Saffirio (University of Basel).

3.1 Question of the appropriate functional spaces to solve the hierarchies

The proof of Lanford’s theorem (Theorem 2.5) is extremely long and complex, and it has been com-
pleted over time by many authors. A first question consists of determining in which spaces we can
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Figure 3: Comparison of pseudo-trajectories of the two hierarchies associated to the same elementary
term, in the pathological case of a recollision.

resolve the hierarchies (25) and (28). It is therefore a question of functional analysis, and which is
fundamental to obtain the existence of the objects used in the rigorous derivation of the Boltzmann
equation.

In the case of the Boltzmann hierarchy, we can simply work in spaces of continuous functions, since
the free transport preserves continuity. But in the case of the BBGKY hierarchy, which describes the
evolution of the system of hard spheres, we are confronted with continuity problems, due to the nature
of the particle dynamics.

In particular, due to problems coming from the definition of the hard sphere dynamics, it is not pos-
sible to consider the flow induced by the dynamics of these particles for any initial data (consider for
example the case of a collision involving three particles at the same time : it is not possible to compute
the post-collision velocities with the formulas (3) in this case). In particular, we can no longer work
with spaces of continuous functions, and we must then use Lebesgue spaces (typically, we will consider
L functions on the phase space).

But then a new problem arises, since in this case, how to define the collision operator (26) for a
function fj(\fﬂ) € L* (D%) ? Indeed, this operator is defined using an integral over a submanifold
of strictly positive codimension, which does not make sense for a function L* in general. We must
therefore look for a trace result for the solutions of the BBGKY hierarchy. This problem gave rise to
a long development in the thesis [19], in which the problem is solved in detail following a construction
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proposed in [24], and synthesized in the article [20]. We obtain in particular the following result,

which describes the sufficient regularity of a function f MARATN (D%) for which the integrated
transport-collision operator is well-defined.

Theorem 3.1 (Definition of the integrated transport-collision operator of the BBGKY hierarchy,
D. 2019 [19], [20]). Let s be a strictly positive integer, € and T be two positive numbers. Let gsiq :
[0,T] x Ry — Ry be a function such that:

o (t,x) — gs11(t, x) is measurable and positive almost everywhere,
e for all x € Ry, the function t — gs+1(t,x) is increasing,

e for allt € [0,T] and almost all (v1,...,vs) € R, the function
Vgl —> }Vs+1|gs+1 (t, ‘Vs+1|) 1s integrable on mathbde,

e for allt € [0,T], the function (vi,...,vs) — / ‘Verl‘gsH (t, ‘VSJrlD dvsy1 is bounded almost
R4

everywhere, and

"/Igdﬂvs+1|ZR“/;+l‘gs+l(ta [Vig1|) dvssa

L()O([07T]7L00(D§+1))
tends to 0 when R tends to infinity.

Then, for any integer 1 < i < s, and any function h6TY e C([OjT], L"O(Dgﬂ)) such that there exists
A € Ry which satisfies
|ne D, 2,0

< AMlgs1 (8 [Vara )| oo 017,200 (0

5+1))7

Loo([0,T],L°(D5 441))

the function C§75+17i7i’7f+1’5h(3+1) is well-defined, belongs to L>=([0,T] x D%,4), and we have almost
everywhere on [0,T] timesD5:

Sdfl
it i T HTRETI(, 20| < )‘Ed_l‘g‘ /Rd (lvil + vss1) gsr1 (t [ Visa]) dogia.

The question of the definition of the spaces X (See the Definition 2.3 page 16), necessary to solve
the hierarchies using a fixed point method, is also discussed in detail in [19], [20]. In particular, there
remained unclear points in the literature regarding the stability of such spaces under the action of the
collision operators introduced above. In [19], [20] we establish that such spaces cannot be stable if the
continuity in time is uniform in s, and we show that by taking (36) as the condition of continuity, we
can apply the fixed point, which makes it possible to obtain Theorem 2.4 in the spaces introduced in
[19], [20].

3.2 Rigorous derivation of the Boltzmann equation in a domain with boundary:
the case of the half-space

A natural generalization of Lanford’s theorem consists of studying the case of a domain with boundary.
When we prescribe specular reflection as the boundary condition, we then see that the steps of the
derivation described in Sections 2.2 and 2.3 can be followed identically, and they provide the same
results, up to Duhamel’s formulae (42) for hierarchies.

The problem of the control of the recollisions in the case of a domain with boundary presents substantial
additional difficulties. In the thesis [19], we considered the simplest case of domain with boundary:
the half-space Ry x R?~! which is therefore delimited by the hyperplane {0} x R?~!. In the case
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of the whole Euclidean space, there is only one way for two particles with fixed initial positions to
collide, since the particles move in straight lines. In the case of the half-plane, for a pair of particles,
each of the two particles may have hit the boundary of the domain, or not hit it, before the collision
occurs between the two particles of the pair. We therefore have four configurations to study, which
makes the application of the shooting lemmas of [24] more complex and more technical.

The boundary of the domain also produces the following phenomenon, with important consequences,
and which are not only of technical nature. As we saw in Section 2.3, we seek to show that only a
small quantity of pseudo-trajectories present a recollision. In the case of a domain with boundary, one
cannot hope to prove such a result when a particle of the system undergoes a particle adjunction when
it is close to the boundary of the domain. We must then, one way or another, get rid of the pseudo-
trajectories for which the particles are close to the boundary. However, the respective positions of the
particles are never integration variables when we define the integrated transport-collision operators
(26), (29), (38), (39).

The method therefore consists of ensuring that the particles do not stay too long near the boundary.
To do this, we can carry out a first cut-off in grazing velocities (relative to the boundary of the
domain), then a second cut-off in times when the particles are close to the boundary, the sets of times
that we obtain are then small thanks to the cut-off in grazing speeds. This method is described in
detail in the thesis [19], and summarized in the article [20].

We can then deduce a Lanford’s theorem in the case of the half-space, that is, a rigorous derivation
theorem of the Boltzmann equation in this domain, with an explicit convergence rate.

Theorem 3.2 (Lanford’s theorem in the half-space with specular reflection, D. 2019 [19], [20]). Let
fo: {x cR? Jx-ep > 0} x R* = Ry a continuous probability density such that

fo(z,v) exp <§\v|2) < 400 (49)

f(z,v)  —  0and ‘
Loc(R2d)

|(z,0)| =00

for a certain number 5 > 0.

We consider the system of N hard spheres of diameter € in the half-space (in dimension d) with
specular reflection, initially distributed according to the density fo, and independent.

Then, in the Boltzmann-Grad limit N — 400, Ne?™1 = 1, the first marginal f](vl) of the distribution
function of the system converges towards the solution f of the Boltzmann equation with collision kernel
b(v,w) = (v - w)4, with specular reflection as boundary condition, and the initial condition fy, in the
following sense:

for any compact set K of the phase space {z - e; > 0} X R? to a particle such that

K Cc{x-e1 >0} x{v-e; #0}, (50)
we have

1) H
1 , — ) — 0. 51
H K(x U)( N f) (.%' U) Lo ([0,T]x{z-e1>0}x{v-e1#0}) N—+o0 ( )
If in addition \/fy is a Lipschitz function with respect to the position variable, uniformly in the velocity
variable, the convergence rate is at most of order O(g*) with a < 13/128.

This is the first rigorous derivation result, with an explicit convergence rate, of the Boltzmann equation
in a domain with boundary. Let us also observe the locally uniform convergence in the velocity and
position variables obtained in Theorem 3.2, which is an improvement of the convergence obtained in
Theorem 2.5.

The restriction (50) on the compact sets K on which we obtain the uniform convergence (51) is
particularly interesting: we see that the boundary of the domain induces a singularity. In the future,
we can then consider the following question.
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Project 3.1. Is the restriction of the uniform convergence domain more than a technical artifact of
the proof? Is it a boundary layer phenomenon, already appearing on the mesoscopic scale, that is to
say, when we move from the microscopic description of the gas to the statistical description given by
the kinetic equations? What is the true nature of such a restriction?

3.3 Towards domains with a more general geometry: partial results in the case
of the disk

With Chiara Saffirio (University of Basel) we have undertaken, since 2020, to extend the result of
Lanford’s theorem to the case of the disk, assuming once again that the specular reflection takes place
at the boundary of the domain. This is the main project of my first post-doctorate, a project on which
we are still working. As in the case of the half-space, the different stages of the classical proof adapt
without problem and it is possible to obtain the same results as in the case of the domain without
boundaries (existence and uniqueness of the solutions of the hierarchies, explicit expression solutions),
with the exception of the control of recollisions, which requires in the present a careful study of the
trajectories.

The control of recollisions in the case of the disc this time gives rise to notable complications, much
more difficult to solve than in the case of the half-space. Indeed, in the case of the disk, as for any
domain whose complement is not convex, a particle can a priori bounce a very large number of times
against the boundary of the domain before colliding with another particle of the system. Controlling
recollisions then amounts to solve a shooting problem, explicitly, in a circular billiard table. More
precisely, we had to prove that, for any bouncing number n, any starting point z; and any target
point 9 in the disk, only a small set of initial velocities makes it possible to reach the neighborhood
B(x9,¢) starting from x1, bouncing exactly n times against the edge of the disk.

We managed to solve this shooting problem, proceeding according to the following steps.

1. Obtaining an upper bound on the number of trajectories from x; to 22 with exactly n bouncings,
uniform in z; and zs.
To obtain such a bound, it is convenient to consider, for a point x; that is fixed, all the trajectories
starting from this point, and to focus on the lines obtained after exactly n bouncings. One way
to consider these lines together is to study the envelope of this family of lines. In the case of a
single bouncing, for a starting point x1 on the edge of the circle, the envelope that we obtain is
a curve that is well-known: the cardioid. Figure 4 illustrates this approach. Generally speaking,
the envelopes of reflected rays are called caustic curves, which can be defined for any starting
point x1, and any number of bouncings n. It turns out that these general caustic curves have
already been studied, by Holditch in 1858 [30]. An example of such a curve is shown in Figure
5. We can show that these curves, which we will denote by H,(z1), are algebraic, of degree
< Cn, where C' is a universal constant. Therefore, we deduce by a classical theorem of algebraic
geometry that the number of tangents to the Holditch curve H,(x1) passing through a given
point x5 is bounded by Cn?. Now, a tangent to the Holditch curve is by definition one of the
lines of the family of which the Holditch curve is the envelope. In other words, by definition, for
any trajectory starting from x1, the line which contains the part of the trajectory between its
n-th and its (n + 1)-th bouncings is a tangent to the Holditch curve H,(x1). As a consequence,
we deduce the uniform bound, in 1 and zs, on the number of trajectories which reach zo from
x1 after exactly n bouncings.

2. Show that any trajectory from z; to Ty € B(z2,¢€) is obtained by slightly perturbing the direction
of the initial velocity of a trajectory going exactly from z1 to xo.
The objective of this point is clear: we want to characterize the set of trajectories going from
x1 to any point of B(x,¢) in exactly n bouncings. To do this, we consider a given trajectory,
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Figure 4: Representation of the first part of the trajectories starting from a given point lying on the
circle on the left, in the center the trajectories obtained after a first reflection, and on the right the
envelope of these reflected lines: the cardioid.

which goes from x; to x2 in n bouncings. We want to show that only a small perturbation of
the direction of the initial velocity of this trajectory is necessary to reach any point of B(x2,¢)
in n bouncings. More precisely, we would like to show that to cover a small disk of size ¢, a
perturbation of order € only is sufficient to cover the targeted disk. This is an intuitive result.
However, it is not true in general. Indeed, on the line which contains the n-th part of the
trajectory from x; to xo there is a particular point, which we will denote by z,, and which is the
intersection of this line with the Holditch curve. In other words, z, is the point of tangency of
the trajectory with the Holditch curve H,(xg). Now, a caustic curve can be seen, intuitively, as
the locus of the points of intersection of curves Cy, Cy (from the family of curves (Cy),) which
are infinitely close (that is, with A # X', but |\ — | very small). Thus, close to z,, a perturbation
of the initial direction of order ¢ is not enough to cover a targeted disk of radius €.

On the other hand, we can show that for any § > 0, provided that the point x5 is at a sufficient
distance from the point z, on the Holditch curve, then indeed a perturbation of the direction of
the initial velocity of order €17 is enough to completely cover the targeted disk B (22,€).
Consequently, any trajectory of x; which reaches in n bouncings any point z5 € B(x2,¢) can be
perturbed in order to obtain a trajectory reaching exactly x2 in n bouncings, and so we deduce
the characterization of the initial velocities of the trajectories from x1 to B(z2,¢) in n bouncings.

3. The last step consists of ensuring that (up to proceed to a cut-off of a small set of pseudo-
trajectories) we can actually assume that the center z of the target disk is generally quite far
from the point z,, described in the previous step. This third step is obtained by using the
transversality of the trajectories with the Holditch curve.

Our proof allows to control recollisions in the case of the disk, in a quantitative manner. However,
our proof currently only applies only to the pre-collisional case. Our next objective is now to adapt
this proof to the post-collisional case, which we hope to achieve within a few weeks.

Project 3.2. Extend the above proof to the post-collision case, which will allow us to complete the
proof of the rigorous derivation of the Boltzmann equation in the disk.

These partial results gave rise to a presentation at a conference in Oberwolfach last September (work-
shop “Classical and Quantum Mechanical Models of Many- Particle Systems”, presentation which
appears in the Oberwolfach reports [42]), as well as the presentation of a poster at the PSPDE XI
conference in Lisbon.
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Figure 5: Representation of the trajectories starting from the point x; = (0.5,0) obtained after 5
reflections on the left, in the center the associated Holditch curve Hs(x1) is plotted, and on the right
we added some particular trajectories, from their common starting point, up to their fifth bouncing.

4 Contributions to the theory of inelastic particles

The results obtained in this section are the results of my second post-doctoral fellowship, under
the supervision of Juan Veldzquez (University of Bonn). Our initial motivation was to establish an
Alexander theorem for systems of inelastic particles, which collide according to the law (19) (see
Section 1.4, and in particular its last paragraph, for a presentation of the context of this important
problem in the case of granular gases). This problem has proven to be very difficult, even for systems
consisting of small numbers of particles.

4.1 Study of the inelastic collapse of 3 particles in dimension d > 2: classification
of singularities and explicit construction of collapses

In order to better understand the phenomenon of inelastic collapse, we studied the case of a system
of three particles, in dimension d > 2. Let us name these particles @, @, @ In [56], Zhou and
Kadanoff studied this system, obtaining two necessary conditions on the final particle geometry as a
function of the restitution coefficient . In particular, if we call 6 the angle (z; — zg, z2 — z¢) (that is,
if we assume that the particle @ is in contact with each of the two other particles @ and @ at the

moment of collapse, # is the angle formed by the particles @ and @ around of the central particle

@), these authors showed that there cannot exist a stable collapse (with respect to perturbation of
the initial data) if the angle 6 does not verify the inequality:

2r1/3(1 4 11/3)

—cosh>2 T8 U, 2
cosf > T (52)

Our goal was to establish a solid mathematical theory of such a system.

First, we showed that when a system of three particles undergoes an inelastic collapse, the pairs
of particles which collide an infinite number of times are in contact at the limit. We have also shown
the convergence towards 0 of the normal components of the relative velocities. Finally, we determined
the asymptotic behaviors of the different variables used to describe the particle system, in the collapse
limit. We found in particular, in a rigorous manner, the fact that all the variables which tend towards
0 are estimated by the normal components of the relative velocities, and by the differences between
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the times of consecutive collisions.

Let us emphasize that these general results are obtained without assuming anything but the fact that
a collapse indeed takes place (i.e., assuming only that an infinite number of collisions occur in a finite
time, without assume nothing else). This is an important difference from [56], where the authors
assumed a priori that the order of collisions is given by the infinite repetition of the pair of consecutive
collisions @—@, @—@

Let us observe that the order of collisions of a system of three particles is necessarily, in dimension 1,
the order considered by Zhou and Kadanoff. On the other hand, in higher dimensions, a priori any
order of collisions is possible. From the general results mentioned above, we in fact deduced a complete
classification of the possible singularities that constitutes a collapse. More precisely, we proved that
if a collapse occurs, it can only occur according to one of the only two possible orders of collisions. If
an infinite number of collisions occur, the order of collisions becomes, after a certain (finite) number
of collisions, a periodic order. The first order corresponds to the case studied by Zhou and Kadanoff,
and corresponds to a perturbation of the case one-dimensional case. The second possible order is the
repetition of the period (up to relabel the particles) @—@, @—@, @—@ Note that such a collision
order can never be associated with a one-dimensional system. In this sense, it is the description of a
typically d-dimensional collapse phenomenon, with d > 2. To our knowledge, no such phenomenon has
been previously described in the literature. In particular, if such a collapse occurs, the three particles
are all in contact at the limiting time of collapse, forming an equilateral triangle. There is no other
possible collision order.

Note also that knowing the order of collisions allows us to study the final state of the system. In
particular, we can deduce constraints on the relative velocities at the moment of collapse. In the case
of the triangular collapse, we obtained that the relative velocities are extremely constrained, which
strongly suggests that if such a triangular collapse exists, it must be unstable with respect to pertur-
bations of the initial configuration. However, we did not constructed explicitly an initial configuration
that produces a triangular collapse. A reasonable objective, undoubtedly relatively calculative but
elementary, is the following.

Project 4.1. Determine whether the triangular collapse is indeed occurring. If yes, construct an initial
configuration of the particles such that the dynamics of the system starting from this configuration
produces a triangular collapse, and if possible, describe the rate of convergence of the different variables
describing the dynamical system.

Finally, as an application of the results on the asymptotic behavior of the different variables in the
neighbourhood of the collapse, we explicitly constructed initial configurations which lead to the in-
elastic collapse, following the order of collisions @—@, @—@ We showed that such a collapse is
stable, in the sense that perturbations of the configurations that we provided still lead to a collapse.
This is the first explicit construction of stable configurations leading to a collapse in the literature, to
our knowledge. The fact that these configurations are stable explains why collapse has been observed
so often during the numerous numerical simulations found in the literature (see for example [39], [43]).
To conclude, let us note that we managed to construct collapses such that the final geometry of the
system is prescribed a priori, with arbitrary precision, within the framework of the conditions already
stated by Zhou and Kadanoff in [56] in the following sense. For any angle 6y € [r/2, 7] which satisfies
the condition (52) of Zhou and Kadanoff, we produced initial configurations such that the final angle
at the moment of collapse is arbitrarily close to 8y. In particular, for r small enough, we produced
configurations whose final angle is arbitrarily close to m/2, which constitutes an extreme deformation
of the one-dimensional case.

These results are presented in the recent pre-print [21].

In another work [23], we studied in more detail the collapse of three particles, assuming that the
order of collisions is the repetition of the period @—@, @—@ The objective remains the same: to
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prove an Alexander theorem for such a system of particles. We therefore sought to determine which
initial configurations led to a collapse so that the tangential components of the relative velocities at
the moment of the collapse were not zero. In such a case, it would be possible to continue the dynam-
ics of the particles beyond the time limit of the collapse: the agglomeration of particles would then
“dissipate” by itself.

The approach adopted in this work consists of using the asymptotic behaviors of the variables to
simplify the dynamical system which fully describes the evolution of particles. This complete dynam-
ical system is too complicated to be studied directly, since for particles of R?, we have a system of
dimension 7, of dimension 11 in the case of R3.

However, the study of the asymptotic behavior of the variables makes it possible to reduce the com-
plete dynamical system, by studying the evolution of the leading order terms. We then obtained a
reduced system of dimension 2, the evolution of which leads the rest of the other variables of the
complete dynamical system.

The study of the reduced system is not simple, and it is necessary to identify particular regimes in
which the dynamics can be simplified even further. Inspired by the article by Zhou and Kadanoff, we
identify a regime in which the dynamical system ultimately reduces to a system of dimension 1, which
we can therefore study completely. We then attempted to characterize, in the two-dimensional phase
space of the reduced dynamical system, the orbits for which the Zhou-Kadanoff regime is valid in the
limit. More precisely, we obtained the following results.

e We proved that the Zhou-Kadanoff regime is attracting in the phase space of the reduced dy-
namical system, at least in a non-trivial region.

e Based on the numerical simulation of the orbits of the reduced dynamical system, we conjectured
that the Zhou-Kadanoff regime is the only possible stable regime, that is to say, for any part of the
phase space of positive measure, either the orbits are not globally defined, or they asymptotically
verify the Zhou-Kadanoff regime. In addition, we identified a curve in the phase space, which is
a separatrix: this curve separates the phase space into two parts, on one side the orbits which
are not globally defined, on the other the orbits which verify the Zhou-Kadanoff regime. We
hope to be able to prove these conjectures regarding the reduced dynamical system in the near
future.

e Finally, we identified a formal limit which allows us to rewrite the equations of the reduced
dynamical system. For this new system obtained in this limit, which we called low energy limit,
we proved the conjectures of the previous point. In particular, we show that there does exist a
separatrix, which clearly separates the phase space between the orbits which satisfy the Zhou-
Kadanoff regime on the one hand, and on the other hand the orbits which become singular in
finite time.

The next questions to be addressed are as follows. The first project seems reasonable, since it largely
follows the ideas developed in the generic case. The second project aims to obtain a technical result, but
which in fact justifies the reduction to a system of dimension 2. Finally, the third project, undoubtedly
difficult, will perhaps require new tools (computer-assisted proofs, to determine the separatrix?)

Project 4.2. Conduct the same study in the case when one of the two relative velocities tends towards
zero at the time of collapse, then in the case where both relative velocities tend towards zero: reduce
the size of the system, identify the generic regime, and show its stability, at least in a non-trivial part
of the phase space.

Project 4.3. Rigorously justify that, in the collapse regime, the orbits of the complete dynamical
system are correctly approximated by the orbits of the reduced system.
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Project 4.4. Prove the characterization of the orbits of the reduced system which verify the Zhou-
Kadanoff regime. In particular, show that there indeed exists a separating curve, probably composed of
heteroclinic trajectories, which separates the phase space between the asymptotically Zhou-Kadanoff
orbits, and those which become singular in finite time.

4.2 An example of an inelastic particle system whose flow preserves the measure
in the phase space, but whose kinetic energy is not conserved

In the recent pre-print [22], we constructed an example of a particle system with two properties, a
priori incompatible. On the one hand, the collisions between particles are inelastic, and therefore the
system dissipates kinetic energy. On the other hand, the flow associated with the particle dynamics
preserves the measure in the phase space. This property is surprising, since in the case of elastic hard
spheres, the measure is preserved in the phase space (this is an important property used to establish
Alexander’s theorem [1], which ensures the well-posed character for almost any trajectory). In the
inelastic case (19), the measure is not preserved, which prevents us from reproducing the proof of
Alexander’s theorem in this case.

The model that we built in [22] is a two-dimensional model, and we assumed that a fixed quantity
€o > 0 of kinetic energy is dissipated during each collision, according to the law:
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Such a law can be interpreted as follows: we model excited particles, which when they collide emit a
photon of energy. For this reason, we called this model the system of hard spheres with emission.

It is important to note that the system preserves the measure in the phase space only in dimension
2. In [22], we give an interpretation of this property of measure conservation in terms of conformal
mappings, which allows us to define other models of inelastic particles, in any dimension, whose flow
preserves the measure in the phase space.

An important application of the properties of the system of inelastic hard spheres with emission
is the following result.

Theorem 4.1 (Alexander’s theorem for inelastic hard spheres with emission, D., Veldzquez 2024 [22]).
Let N be a strictly positive integer.

Then, the dynamics of the system of N inelastic hard spheres with emission is globally defined for
almost any initial configuration in dimension d = 2. In other words, for almost every initial configu-
ration (with respect to the Lebesque measure) Zn = (x1,v1,...,2N,vN) of N particles, the evolution of
the system from this initial configuration Zy is well-defined for all times t > 0, only involves inertial
movements or binary collisions, and moreover for all T > 0, the system does not undergo more than
a finite number of collisions over the time interval [0,T].

To the best of our knowledge, this is the first example of an Alexander’s theorem for an inelastic
particle model. This result prompts us to consider the following question.

Project 4.5. Prove an Alexander theorem for inelastic particles whose restitution coefficient is vari-
able, and tends towards 1 for small relative speeds (viscoelastic case, considered as more realistic in
the physics literature).
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5 Ongoing projects, and perspectives

5.1 Ongoing projects and collaborations

In parallel with the project started with Chiara Saffirio, already mentioned in Section 3.3 and which
is a long-term collaboration, I am involved in the following ongoing projects.

Project 5.1. Study the derivation of the Boltzmann equation in a domain, which is the complement
of a convex obstacle. I am leading this project alone, in a relatively advanced state and on which I
started working during my first post-doctoral fellowship in Basel.

Project 5.2. Study of the coagulation equation, in the case of the additive kernel K (z,y) = x+y, with
a source term. This project, started during my second post-doctoral fellowship in Bonn with Eugenia
Franco (University of Bonn), aims to study the long-time behavior of the Smoluchowski coagulation
equation. In particular, we already know that in the case of the constant kernel K(z,y) = 1, a
periodic source in time produces a periodic solution in time [47]. But on the other hand, the long-time
behavior of the coagulation equation, without source, for constant, additive or multiplicative kernel
has been studied in detail, in particular in [40]. It is remarkable that the solutions converge towards
a self-similar profile. In our case, the question is to determine whether the periodicity in time of the
source, is also a property that holds, or not, for the solution of the equation for large time. In other
words, we seek to know which effect dominates between the attraction towards the self-similar profile,
and the forcing of oscillations due to the source.

Project 5.3. Study of the derivation of the Boltzmann equation from discrete velocity particle models
(Uchiyama model). This project was started with Nathalie Ayi (LJLL) in November 2023. It is
known that the Uchiyama particle model, in the Boltzmann-Grad limit, does not converge towards the
Broadwell equation (the equivalent of the Boltzmann equation, for particles with discrete velocities),
see for example [50], [51]. But certain authors ([11], [18]) have managed to derive the Broadwell
equation from particle models, discrete in position and speed (HPP model [29]), provided to introduce
stochasticity into the dynamics of the particles. We aim to understand if such an approach can provide
similar results starting from the Uchiyama model (which describes particles with discrete velocities,
but continuous positions).

Project 5.4. Study of the system of four inelastic particles in dimension 1. This work is a continuation
of the master thesis [31] of Eleni Hiibner-Rosenau (now at the University of Regensburg), which I
supervised and which was defended in November 2023. With Eleni Hiibner-Rosenau, based on the
article [16], we seek to determine what are the possible orders of collisions for such particle systems.
We have already collected some partial results, and we have already carried out a large number of
numerical simulations of such particle systems.

5.2 Insertion of my research themes into the University

My field of research belongs to the field of the analysis of PDEs, in particular kinetic equations, and
also belongs to the field of dynamical systems, in particular, the field of interacting particle systems.
Italy has one of the strongest communities of experts in kinetic equations, which constitutes for me an
extremely stimulating environment. Besides, the study of the derivation of the Boltzmann equation
maintains strong links with the equations of fluid mechanics when we study hydrodynamic limits, in
particular with the Euler and Navier-Stokes equations. Furthermore, it would be interesting, within
the framework of the project 3.1, to explore the connections between Lanford’s proof and Prandtl’s
system, which describes the interactions between a fluid and a solid structure. In the same way, fluid
mechanics equations obtained in the context of granular materials constitute a natural area of inter-
action with the research I have carried out so far.

Concerning particle systems, especially in the inelastic case, it should be noted that many phenomena
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have been observed numerically, and within the framework of the project 5.4 we have made an exten-
sive use of simulations. This subject therefore invites interaction with experts of numerics (especially,
about discrete dynamical systems), and important questions at the interface with this field arise: for
example, what can we say about the numerical stability of the simulations? Is there a shadowing
lemma in the inelastic case?

Of course, we can also approach particle systems with the classical tools of dynamical systems (invari-
ant measures, ergodicity, mixing property, existence of attractors, etc.). I do not believe that these
questions have been explored so far in the inelastic case, and the results obtained in the elastic case
do not allow to claim a deep understanding of the phenomena at stake (what about the correlation
between particles, so important to understand the Boltzmann equation?). T would also be delighted
to initiate collaborations in these directions.

We can also consider the framework of particle systems whose dynamics are stochastic (project 5.3).
These questions naturally lead to discussions with specialists of probability.

Finally, the project 5.2 started with Eugenia Franco concerns the coagulation equation, which belongs
to the world of biomathematics.

6 Comments on past teaching experiences and perspectives

6.1 Past teaching experiences

Since the beginning of my thesis in 2016, I have had to teach to diverse groups, ranging from under-
graduate students to fellow researchers. I have always taken great pleasure in passing on knowledge.

During my three years of thesis I was in charge of exercise classes at the University of Paris Diderot.
During my first year, I led exercise corrections for classes of biologists, then chemists, in both cases in
their first year of study. Here, the exercise consisted of addressing an audience that was not comfort-
able with the subject, most of the students in these groups not seeing Mathematics as an interesting
subject for itself, but only as a tool. With such an audience one must take this into account, and one
has often to move forward in a minefield, when certain students have had a negative experience with
the subject. But with the time available during weekly tutorial sessions, I believe it is possible not
only to respect the program, but also to go over the basics when necessary. The first year program
is basic enough to start from scratch, and the examples available are numerous enough to be able to
illustrate each concept.

The last two years of my thesis, I was then in charge of tutorials for undergraduate students in funda-
mental or applied mathematics in their last year, for the introductory course on ordinary differential
equations lectured Davide Barilari. The material is very rich, since we have covered the systematic
(almost mechanical) approach to the resolution of linear equations in dimension 1, with constant co-
efficients in the case of order 2, then the linear systems in any dimension on the one hand, and on
the other hand the consequences of the Cauchy-Lipschitz theorem (subject which exposes more the
students to the qualitative properties of solutions).

In parallel with this teaching, I was also in charge of the “in-depth” teaching unit, which was aimed
at first-year Mathematics students. On a voluntary basis, we solved advanced exercises every week,
and I was free to choose the themes of the sessions. The first year, for example, I organized the course
around a guiding theme: finding Newton’s result about the elliptical trajectories of the planets. I
found the subject appropriate, since it was necessary to practice, in turn, differential equations (and
therefore, differential and integral calculus), conics (and therefore, geometry and algebra), and even
questions of stability of dynamical systems (for example, we looked at Lagrange points, which require
to use Taylor expansions). None of these subjects were outside the scope of the program, and they all
required a good mastery of the objects that the students had just discovered.

4
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Subsequently, I continued to teach, in Basel then in Bonn. At Paris Diderot all the courses were
in French, I subsequently learned to work in English. During the first semester of 2019-2020, I also
corrected German papers, handed in every week. In Basel, I was an assistant for Marcus Grote’s in-
troductory numerical analysis courses, Enno Lenzman’s analysis courses (compactness, completeness,
connectedness, metric spaces, topology, and differential calculus), for the lecture on measure theory
and integration of Chiara Saffirio, and finally an introduction to PDEs and Sobolev spaces by Gianluca
Crippa. I was also a lecturer, for a master’s unit, during half a semester, on kinetic equations: Chiara
Saffirio covered the part on transport and Vlasov equations, and I presented the Boltzmann equation.
This experience was stimulating and demanding: I had to address master’s students who were not
all familiar with functional analysis. I therefore built the course and illustrated the main phenomena
around the Boltzmann equation using, among others, the article by Carleman [10], quite elementary,
but in which we find the ideas applied later in the framework of modern functional analysis (a priori
estimates, construction of solutions by schemes of sub- and super-solutions which converge and which
are based on the positivity of the operator, etc.). Preparing the course and weekly exercises based
only on scientific literature (the books on the subject were mostly based on tools too advanced for the
students to be used) taught me a lot, not only as a teaching experience, but I also took the opportunity
to explore in more detail many questions related to the subject of the lecture.

Finally, in Bonn, where my contract did not present mandatory teaching duties, I continued to discover
new forms of teaching. At this University, professors and post-docs are free to organize courses on the
theme of their choice. In addition to the introductory master’s course on the Boltzmann equation,
which I gave during the fall semester 2023 and which I enriched compared to the one given in Basel, 1
was an assistant for several courses (dynamical systems, asymptotic methods for differential equations
and dynamical systems) and organized a “Graduate Seminar”: around the theme of the hydrodynamic
limits of the Boltzmann equation, each week a student was asked to present a recent article of the
domain.

In Basel as in Bonn, students evaluate course and exercise session leaders via anonymous question-
naires. I have always received very positive feedback: in Bonn for example, during the course on the
Boltzmann equation, 6 out of 6 students answered the question “Halten Sie den*die Dozent*in fiir
lehrpreiswiirdig?” (do you think the lecturer deserves a teaching award?) by “Ja, definitiv”.
Generally speaking, I remember from my stays abroad the discovery of different ways of teaching.
From each of these approaches, I believe that we can derive different and complementary advantages.
In any case, I am happy to have seen how our neighbors work, and I hope to have improved through
contact with them.

Finally, I would like to mention my experiences supervising master’s theses: I was lucky to have
this responsibility in Bonn. I supervised Eleni Hiibner-Rosenau’s master’s thesis, defended in Novem-
ber 2023 [31], on a subject that I chose in relation to the research project that I am leading in Bonn:
problems around the dynamics of inelastic particles in dimension 1. Eleni Hiibner-Rosenau is now
continuing her studies, preparing a thesis at the University of Regensburg. With Eugenia Franco
(University of Bonn), since autumn 2023, I have been co-supervising Daniel Happ’s master’s thesis,
on growth-fragmentation equations. I find this experience particularly enriching.

6.2 Perspectives about teaching

In the future, I would like to continue my teaching activities. I consider that this activity ideally
complement the work of a researcher.

I would be happy to teach, both in bachelor’s and master’s degrees. I will be able to do so in English
without difficulty, and I believe that I could be able to do it also in Italian in a reasonable amount of
time (for a French native speaker, I think that the exercise is probably not so hard).

In addition, I would happily take part in the activities of supervising student dissertations, which I
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have enjoyed so much so far. I am thinking, in the short term, of bachelor’s and master’s theses, but
also in the longer term, of more important responsibilities, such as the supervision of theses.
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