

Studio dell'Università degli Studi di Milano, "Centro Dino Ferrari" e Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico identifica varianti genetiche rare nell'Atrofia Muscolare Spinale: fondamentali per diagnosi e terapie personalizzate

Milano, 15 settembre 2025 - Un importante studio coordinato dalla Prof.ssa Stefania Corti e dal Prof. Dario Ronchi del "Centro Dino Ferrari" dell'Università degli Studi di Milano e della Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, ha identificato e caratterizzato varianti genetiche rare in pazienti con Atrofia Muscolare Spinale (SMA), una grave malattia neuromuscolare che colpisce i motoneuroni.

La ricerca, guidata dalla Dott.ssa Martina Rimoldi e pubblicata sulla rivista <u>Neurology Genetics</u>, ha analizzato 149 pazienti con SMA negli ultimi 20 anni, identificando nel 5% dei casi varianti nucleotidiche singole nel gene *SMN1* associate a delezione eterozigote. Questa scoperta è particolarmente rilevante nell'era delle nuove terapie per la SMA, poiché la caratterizzazione genetica completa è fondamentale per l'accesso ai trattamenti e per comprendere le variazioni nella risposta terapeutica.

"L'identificazione di queste varianti rare è di cruciale importanza per migliorare la diagnosi e la prognosi dei pazienti con SMA", spiega la **Prof.ssa Stefania Corti**, co-responsabile dello studio. "Con l'avvento delle terapie innovative come nusinersen, onasemnogene abeparvovec e risdiplam, una diagnosi genetica precisa e tempestiva può fare la differenza nel percorso terapeutico del paziente".

Il **Prof. Dario Ronchi**, co-coordinatore della ricerca, sottolinea: "Il nostro approccio diagnostico integrato, che combina tecniche quantitative come la PCR real-time e il sequenziamento diretto, rappresenta un cambio di paradigma nelle linee guida attuali. Suggeriamo di considerare l'avvio tempestivo della terapia nei pazienti con delezione eterozigote di SMN1 e fenotipo clinico compatibile, senza attendere il completamento di tutti i test molecolari. È fondamentale sottolineare come al momento i pazienti con varianti rare sfuggano allo screening neonatale con possibili ritardi terapeutici, una necessità che deve essere risolta con analisi complete tempestive in futuro".

Implicazioni terapeutiche innovative

Lo studio ha importanti ricadute terapeutiche. I pazienti con varianti missense come p.(Tyr130Cys) presentano fenotipi più lievi e potrebbero rispondere diversamente alle terapie disponibili rispetto ai pazienti con varianti nonsense. Inoltre, l'identificazione di varianti modificatrici nel gene *SMN2*, come c.859G>C e c.835-44A>G, permette di:

- **Personalizzare il trattamento**: adattare tipo e intensità della terapia in base al profilo genetico specifico
- **Prevedere la risposta terapeutica**: le varianti identificate possono influenzare l'efficacia di nusinersen e risdiplam, che agiscono sulla modulazione dello splicing di *SMN2*
- Ottimizzare il timing di intervento: iniziare trattamenti reversibili come nusinersen o risdiplam immediatamente nei casi sospetti, senza attendere la caratterizzazione genetica completa

• **Sviluppare nuove strategie terapeutiche**: le varianti rare potrebbero richiedere approcci terapeutici specifici o combinazioni di farmaci

Il **Prof. Giacomo P. Comi**, direttore del Centro Dino Ferrari, evidenzia: "Queste varianti modificatrici ci aiutano a comprendere meglio la variabilità fenotipica osservata nei pazienti e possono guidare le decisioni terapeutiche personalizzate. La presenza di varianti come c.859G>C in omozigosi può migliorare significativamente la prognosi e influenzare la scelta del trattamento più appropriato".

Tra i risultati più significativi, **lo studio ha identificato pazienti con geni ibridi SMN1/SMN2, una condizione rara che può sfuggire agli screening standard** ma che presenta implicazioni terapeutiche specifiche, come dimostrato dalla risposta positiva al trattamento con nusinersen in uno dei pazienti dello studio.

L'importanza dello screening neonatale e della diagnosi precoce

La ricerca sottolinea l'importanza dello screening neonatale per la SMA, già attivo in diverse regioni italiane, e la necessità di implementare approcci diagnostici molecolari avanzati per identificare anche le forme più rare della malattia che sfuggono agli screening tradizionali. La diagnosi precoce è fondamentale poiché:

- I trattamenti sono più efficaci se iniziati prima della comparsa dei sintomi
- Le terapie geniche come onasemnogene abeparvovec hanno finestre temporali ottimali di somministrazione
- La degenerazione dei motoneuroni è irreversibile, rendendo cruciale l'intervento tempestivo

Lo studio è stato realizzato con il prezioso supporto della **famiglia Smaldone**, in memoria della **Signora Maria Domenica Smaldone**, il cui contributo ha reso possibile questa importante ricerca che avrà ricadute concrete sulla vita di molti pazienti affetti da SMA e le loro famiglie.

L'Atrofia Muscolare Spinale (SMA) è una malattia neuromuscolare genetica che colpisce circa 1 persona su 6.000-10.000, causando debolezza muscolare progressiva. Con le nuove terapie disponibili, la diagnosi precoce e accurata è fondamentale per garantire i migliori risultati terapeutici possibili.