Fisica moderna e meccanica quantistica (Mod. Fisica Moderna)
A.A. 2018/2019
Obiettivi formativi
Introduzione ai concetti ed alle
tecniche della meccanica quantistica non-relativistica. Il corso presenta le
motivazioni per la meccanica quantistica, ne introduce i principi
fondamentali, e ne discute le principali applicazioni e sviluppi.
Si prefigge di fornire una comprensione dei fondamenti
della meccanica quantistica, ed una conoscenza delle tecniche necessarie per
applicarla.
tecniche della meccanica quantistica non-relativistica. Il corso presenta le
motivazioni per la meccanica quantistica, ne introduce i principi
fondamentali, e ne discute le principali applicazioni e sviluppi.
Si prefigge di fornire una comprensione dei fondamenti
della meccanica quantistica, ed una conoscenza delle tecniche necessarie per
applicarla.
Risultati apprendimento attesi
Non definiti
Periodo: Secondo semestre
Modalità di valutazione: Esame alla fine del gruppo
Giudizio di valutazione: Inserire codice AF
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
CORSO A
Periodo
Secondo semestre
Programma
1. Motivazioni e fondamenti
-Basi sperimentali della meccanica quantistica: onde e particelle
-Sovrapposizione, interferenza, misura
-Vettori di stato
-Operatori associati ad osservabili
-Indeterminazione
-Informazione quantistica: matrice densita', misure ripetute, no cloning
2. Quantizzazione canonica
-L'impulso e il generatore le traslazioni
-La rappresentazione delle coordinate
-Relazione di commutazione canonica
3. Evoluzione temporale
-Il generatore dell'evoluzione temporale
-Equazione di Schrodinger
-Formulazione alla Schrodinger ed alla Heisenberg della meccanica quantistica
4. La particella libera
-Onde piane, rappresentazione delle coordinate e degli impulsi
-pacchetti d'onde
-moto di un pacchetto d'onde, velocita' di gruppo
5. Problemi unidimensionali
-Stati legati e stati del continuo
-La buca di potenziale
-Problemi d'urto: il gradino di potenziale
-Barriera di potenziale ed effetto tunnel
6. L'oscillatore armonico unidimensionale
-Lo spettro e gli operatori di creazione e distruzione
-Autofunzioni e approccio alla Schro"dinger
-Evoluzione temporale e stati coerenti
-Basi sperimentali della meccanica quantistica: onde e particelle
-Sovrapposizione, interferenza, misura
-Vettori di stato
-Operatori associati ad osservabili
-Indeterminazione
-Informazione quantistica: matrice densita', misure ripetute, no cloning
2. Quantizzazione canonica
-L'impulso e il generatore le traslazioni
-La rappresentazione delle coordinate
-Relazione di commutazione canonica
3. Evoluzione temporale
-Il generatore dell'evoluzione temporale
-Equazione di Schrodinger
-Formulazione alla Schrodinger ed alla Heisenberg della meccanica quantistica
4. La particella libera
-Onde piane, rappresentazione delle coordinate e degli impulsi
-pacchetti d'onde
-moto di un pacchetto d'onde, velocita' di gruppo
5. Problemi unidimensionali
-Stati legati e stati del continuo
-La buca di potenziale
-Problemi d'urto: il gradino di potenziale
-Barriera di potenziale ed effetto tunnel
6. L'oscillatore armonico unidimensionale
-Lo spettro e gli operatori di creazione e distruzione
-Autofunzioni e approccio alla Schro"dinger
-Evoluzione temporale e stati coerenti
Propedeuticità
Meccanica, Onde e oscillazioni, Analisi I e II, Geometria
Prerequisiti
Conoscenze di base di meccanica classica, analisi matematica ed algebra lineare
Modalità di esame:
Scritto e orale, con prove in itinere per esonerare dallo scritto
prima prova scritta al termine del primo modulo (fisica moderna), seconda prova scritta e prova orale al termine del corso
Modalità di esame:
Scritto e orale, con prove in itinere per esonerare dallo scritto
prima prova scritta al termine del primo modulo (fisica moderna), seconda prova scritta e prova orale al termine del corso
Metodi didattici
Modalità di frequenza: Fortemente consigliata
Modalità di erogazione: Tradizionale
Modalità di erogazione: Tradizionale
Materiale di riferimento
Dirac- The principles of Quantum Mechanics
Picasso- Lezioni di meccanica quantistica
Capri- Nonrelativistic quantum mechanics
Picasso- Lezioni di meccanica quantistica
Capri- Nonrelativistic quantum mechanics
FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI - CFU: 7
Esercitazioni: 20 ore
Lezioni: 40 ore
Lezioni: 40 ore
Docente:
Caracciolo Sergio
CORSO B
Responsabile
Periodo
Secondo semestre
STUDENTI FREQUENTANTI
Programma
Programma in ITALIANO:
A. Le basi sperimentali della meccanica quantistica
1. Onde e particelle
2. Sovrapposizione, interferenza, misura
B. Fondamenti
1. Vettori distato
2 . Operatori e osservabili
3. Indeterminazione
4. Informazione
C. Quantizzazione canonica
1. La rappresentazione delle coordinate
2. Impulso e traslazioni
3. Commutatori canonici
D. Evoluzione temporale
1. Il generatore dell'evoluzione temporale
2. L'equazione di Schrödinger
3. Formulazione alla Heisenberg
E. La particella libera
1. Onde piane
2. Pacchetti d'onde e stati di minima indeterminazione
3. Moto di un pacchetto d'onde
F. Problemi unidimensionali
1. La buca di potenziale e gli stati legati
2. Il gradino di potenziale e i problemi d'urto
3. Barriera di potenziale ed effetto tunnel
G. L'oscillatore armonico
1. Operatori di creazione e distruzione e spettro
2. Autofunzioni e approccio alla Scrhödinger
3. Evoluzione temporale e stati coerenti
A. Le basi sperimentali della meccanica quantistica
1. Onde e particelle
2. Sovrapposizione, interferenza, misura
B. Fondamenti
1. Vettori distato
2 . Operatori e osservabili
3. Indeterminazione
4. Informazione
C. Quantizzazione canonica
1. La rappresentazione delle coordinate
2. Impulso e traslazioni
3. Commutatori canonici
D. Evoluzione temporale
1. Il generatore dell'evoluzione temporale
2. L'equazione di Schrödinger
3. Formulazione alla Heisenberg
E. La particella libera
1. Onde piane
2. Pacchetti d'onde e stati di minima indeterminazione
3. Moto di un pacchetto d'onde
F. Problemi unidimensionali
1. La buca di potenziale e gli stati legati
2. Il gradino di potenziale e i problemi d'urto
3. Barriera di potenziale ed effetto tunnel
G. L'oscillatore armonico
1. Operatori di creazione e distruzione e spettro
2. Autofunzioni e approccio alla Scrhödinger
3. Evoluzione temporale e stati coerenti
Propedeuticità
Meccanica, Onde e oscillazioni, Analisi I e II, Geometria
Prerequisiti
Prerequisiti:
Meccanica, Onde e oscillazioni, Analisi I e II, Geometria
Modalità d'esame:
Solo scritto, con due prove, una in itinere (al termine del primo semestre) ed una al termine del corso
Meccanica, Onde e oscillazioni, Analisi I e II, Geometria
Modalità d'esame:
Solo scritto, con due prove, una in itinere (al termine del primo semestre) ed una al termine del corso
Metodi didattici
Modalità di frequenza: Fortemente consigliata
Modalità di erogazione: Tradizionale
Modalità di erogazione: Tradizionale
Materiale di riferimento
STUDENTI NON FREQUENTANTI
Testi consigliati
J.J. Sakurai, Meccanica Quantistica Moderna; Zanichelli (testo di riferimento)
F. Schwabl, Quantum Mechanics; Springer (testo di consultazione per i calcoli svolti)
S. Weinberg, Lectures on Quantum Mechanics; Cambridge U.P. (testo di consultazione per approfondimenti)
K. Gottfried e T.M. Yan, Quantum Mechanics: Fundamentals; Springer (testo di consultazione per approfondimenti)
J. Binney e D. Skinner, The Physics of Quantum Mechanics; Oxford U.P. (testo di consultazione per approfondimenti)
Raccolte di esercizi svolti:
G. Passatore, Problemi di meccanica quantistica elementare; Franco Angeli (elementari)
L. Angelini, Meccanica quantistica: problemi scelti; Springer (elementari)
E. d'Emilio, L. E. Picasso, Problemi di meccanica quantistica; ETS (elementari ed intermedi)
A. Z. Capri, Problems and Solutions in Nonrelativistic Quantum Mechanics; World Scientific (elementari, intermedi e avanzati)
K. Tamvakis, Problems and Solutions in Quantum Mechanics; Cambridge U.P. (intermedi e avanzati)
V. Galitski, B. Karnakov, V. Kogan e V. Galitski, Exploring Quantum Mechanics; Oxford U.P. (700 problemi, soprattutto intermedi e avanzati)
J.J. Sakurai, Meccanica Quantistica Moderna; Zanichelli (testo di riferimento)
F. Schwabl, Quantum Mechanics; Springer (testo di consultazione per i calcoli svolti)
S. Weinberg, Lectures on Quantum Mechanics; Cambridge U.P. (testo di consultazione per approfondimenti)
K. Gottfried e T.M. Yan, Quantum Mechanics: Fundamentals; Springer (testo di consultazione per approfondimenti)
J. Binney e D. Skinner, The Physics of Quantum Mechanics; Oxford U.P. (testo di consultazione per approfondimenti)
Raccolte di esercizi svolti:
G. Passatore, Problemi di meccanica quantistica elementare; Franco Angeli (elementari)
L. Angelini, Meccanica quantistica: problemi scelti; Springer (elementari)
E. d'Emilio, L. E. Picasso, Problemi di meccanica quantistica; ETS (elementari ed intermedi)
A. Z. Capri, Problems and Solutions in Nonrelativistic Quantum Mechanics; World Scientific (elementari, intermedi e avanzati)
K. Tamvakis, Problems and Solutions in Quantum Mechanics; Cambridge U.P. (intermedi e avanzati)
V. Galitski, B. Karnakov, V. Kogan e V. Galitski, Exploring Quantum Mechanics; Oxford U.P. (700 problemi, soprattutto intermedi e avanzati)
Prerequisiti
Conoscenze di base di meccanica classica, analisi matematica ed algebra lineare
FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI - CFU: 7
Esercitazioni: 20 ore
Lezioni: 40 ore
Lezioni: 40 ore
Docente:
Ferrera Giancarlo
Docente/i