Data analysis and statistics

A.A. 2019/2020
6
Crediti massimi
40
Ore totali
SSD
SECS-S/04
Lingua
Inglese
Obiettivi formativi
The increasing availability of data allows to analyse several issues related to social, labour and organizational dynamics. The course aims to introduce the logic of theory-driven statistical analysis in social research, providing useful tools for data manipulation, exploratory data analysis, statistical test, categorical data analysis, and regression.
The course consists of both theoretical lessons, where the main statistical techniques are introduced, and empirical lessons, where techniques are empirically implemented (learning by doing). Lessons are coupled with 20 hours of lab, aiming to consolidate the topics of the classes and to work on the students' final research.
Risultati apprendimento attesi
At the end of the course, students will be able to conduct multivariate analyses and to apply the basic principles of statistical inference. Moreover, students will be able to use the statistical software STATA and to conduct autonomously a research project, with the aim of informing conclusion and supporting decision-making. Finally, students will be able to interpret scientific contributions based on statistical multivariate analysis, considering both the potentials and the limitations of data analysis.
In detail, students will:
- collect data and enter their own datasets for analysis;
- identify appropriate statistical methods;
- conduct their own analysis using the software program STATA;
- interpret the results of the data analysis;
- check the assumptions on which each analysis depends and make appropriate adjustments or select alternative methods of analysis.
Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Primo trimestre
Programma
Data sources for social research
Data matrix, cases and variables.
Distributions and numerical summaries.
Data manipulation.
Scaling and standardizing.
Measuring inequality.
Smoothing time series.
Sampling and statistical inference.
Contingency tables.
Chi-square statistic.
Scatterplots and linear relationships.
Linear regression model.
Causal explanation and multivariate analysis.
Multiple regression and logistic regression models.
Longitudinal data and approaches to event history modelling.
Prerequisiti
Uso basilare del personal computer, nozioni di base di matematica e di statistica.
Metodi didattici
Lezioni frontali ed esercitazioni in laboratorio
Materiale di riferimento
- Finlay, B., & Agresti, A.. Statistical methods for the social sciences.
- Lecture notes (available on ARIEL website during the course).
Modalità di verifica dell’apprendimento e criteri di valutazione
La preparazione degli studenti sarà valutata attraverso un esame scritto e un rapporto di ricerca facoltativo. Questo può essere svolto individualmente oppure in piccoli gruppi.
SECS-S/04 - DEMOGRAFIA - CFU: 6
Lezioni: 40 ore
Docente/i
Ricevimento:
Lunedì 14.30-17.30 (il ricevimento di lunedì 9/12 è sospeso a causa di impegni di didattica. si prega di inviare una mail al docente per fissare un altro appuntamento)
Stanza 1 - primo piano