Research methods
A.A. 2019/2020
Obiettivi formativi
Aims and objectives: Module 1: Logic. The aim of this part of the course is to give students the preliminary elements of classical logic, and some basic information concerning informal logic and argument analysis.
Module 2: Statistics and Econometrics Statistics is dedicated to the introduction of basic elements of probability and inferential statistics. The objective is to provide students with the theoretical and practical notions for estimation and hypothesis testing.
The objective of Econometrics is to provide students with the basic principles of the econometric analysis. All the theoretical aspects of the econometric modelling will be treated jointly with interesting and modern empirical applications in order to motivate students and try to respond to real-world questions with specific numerical answers.
Module 2: Statistics and Econometrics Statistics is dedicated to the introduction of basic elements of probability and inferential statistics. The objective is to provide students with the theoretical and practical notions for estimation and hypothesis testing.
The objective of Econometrics is to provide students with the basic principles of the econometric analysis. All the theoretical aspects of the econometric modelling will be treated jointly with interesting and modern empirical applications in order to motivate students and try to respond to real-world questions with specific numerical answers.
Risultati apprendimento attesi
Module 1: Logic. At the end of the course, the student will be familiar with the language of contemporary logic, and the main logical devices for the analysis and evaluation of reasoning, in science as well as in public communication. The student will know how to symbolize arguments expressed in ordinary language using the tools of propositional and predicative logic, and will be able to apply this knowledge to test the validity of formal arguments and to construct some elementary logical proofs. The student will also be able to reconstruct and evaluate informal arguments expressed in ordinary discourse applying a considerable set of argumentation schemes, and will be able to produce some good arguments to support a given claim.
Module 2. Statistics and Econometrics By the end of the module you will be able to:
Estimate a model using Least Squares.
Interpret the regression estimate and the computer output.
Apply diagnostics to check if the model is correctly specified and propose procedures to correct the miss-specification.
Run an independent analysis in an applied project.
Module 2. Statistics and Econometrics By the end of the module you will be able to:
Estimate a model using Least Squares.
Interpret the regression estimate and the computer output.
Apply diagnostics to check if the model is correctly specified and propose procedures to correct the miss-specification.
Run an independent analysis in an applied project.
Periodo: Primo trimestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Primo trimestre
Prerequisiti
La lingua di erogazione del Corso e' inglese.
Il corso richiede la conoscenza delle principali nozioni di statistica inferenziale, algebra matriciale e concetti essenziali del modello di regressione lineare con un regressore
Il corso richiede la conoscenza delle principali nozioni di statistica inferenziale, algebra matriciale e concetti essenziali del modello di regressione lineare con un regressore
Modalità di verifica dell’apprendimento e criteri di valutazione
La lingua di erogazione del corso e' inglese.
Logic e Statistics and Econometrics sono esaminati separatamente, ed il voto finale e' la media ponderata dei voti nelle due parti (in misura delle ore allocate).
Logic e' esaminato con un esame scritto da 90 minuti, composto da due parti:
Part A. Formal logic test: test semi strutturato con domande a risposta multipla
e domande aperte (45 minuti).
Part B. Argument Analysis: domande aperte (45 minuti)
Parametri di valutazione: conoscenza degli strumenti di logica e argomentazione, capacita' di ricostruire e valuare argomenti formali e informali, capacita' di costruire semplici dimostrazioni e spiegazioni.
Statistics and Econometrics e' esaminato solo con un esame scritto da 90 minuti. Solo per l'appello di Dicembre e' possibile integrare l'esame con un mini-project.
Logic e Statistics and Econometrics sono esaminati separatamente, ed il voto finale e' la media ponderata dei voti nelle due parti (in misura delle ore allocate).
Logic e' esaminato con un esame scritto da 90 minuti, composto da due parti:
Part A. Formal logic test: test semi strutturato con domande a risposta multipla
e domande aperte (45 minuti).
Part B. Argument Analysis: domande aperte (45 minuti)
Parametri di valutazione: conoscenza degli strumenti di logica e argomentazione, capacita' di ricostruire e valuare argomenti formali e informali, capacita' di costruire semplici dimostrazioni e spiegazioni.
Statistics and Econometrics e' esaminato solo con un esame scritto da 90 minuti. Solo per l'appello di Dicembre e' possibile integrare l'esame con un mini-project.
Modulo 1
Programma
LOGICS
· What is logic, what is an argument
· Propositional logic and truth tables valuations
· Predicate logic and possible world interpretations
· Natural deduction and the construction of logical proofs
· Argumentation theory and argument schemes
· Reconstruction and evaluation of informal arguments in ordinary language
· Production of good arguments
STATISTICS
· Preliminary mathematics and introduction to the probability model;
· Random variables and distributions;
· Mathematical expectations;
· Some useful distributions;
· Asymptotic / large sample distribution theory;
· Sampling distributions;
· Point estimation;
· Maximum likelihood estimation;
· Interval estimation;
· Hypothesis testing.
· What is logic, what is an argument
· Propositional logic and truth tables valuations
· Predicate logic and possible world interpretations
· Natural deduction and the construction of logical proofs
· Argumentation theory and argument schemes
· Reconstruction and evaluation of informal arguments in ordinary language
· Production of good arguments
STATISTICS
· Preliminary mathematics and introduction to the probability model;
· Random variables and distributions;
· Mathematical expectations;
· Some useful distributions;
· Asymptotic / large sample distribution theory;
· Sampling distributions;
· Point estimation;
· Maximum likelihood estimation;
· Interval estimation;
· Hypothesis testing.
Metodi didattici
La lingua di erogazione del corso e' l'inglese
Logics: 10 lezioni da due ore
Statistics: 10 lezioni da due ore
Logics: 10 lezioni da due ore
Statistics: 10 lezioni da due ore
Materiale di riferimento
La lingua di erogazione del corso e' l'inglese
LOGICS
· What is logic, what is an argument
· Propositional logic and truth tables valuations
· Predicate logic and possible world interpretations
· Natural deduction and the construction of logical proofs
· Argumentation theory and argument schemes
· Reconstruction and evaluation of informal arguments in ordinary language
· Production of good arguments
STATISTICS
· Preliminary mathematics and introduction to the probability model;
· Random variables and distributions;
· Mathematical expectations;
· Some useful distributions;
· Asymptotic / large sample distribution theory;
· Sampling distributions;
· Point estimation;
· Maximum likelihood estimation;
· Interval estimation;
· Hypothesis testing.
LOGICS
· What is logic, what is an argument
· Propositional logic and truth tables valuations
· Predicate logic and possible world interpretations
· Natural deduction and the construction of logical proofs
· Argumentation theory and argument schemes
· Reconstruction and evaluation of informal arguments in ordinary language
· Production of good arguments
STATISTICS
· Preliminary mathematics and introduction to the probability model;
· Random variables and distributions;
· Mathematical expectations;
· Some useful distributions;
· Asymptotic / large sample distribution theory;
· Sampling distributions;
· Point estimation;
· Maximum likelihood estimation;
· Interval estimation;
· Hypothesis testing.
Modulo 2
Programma
[Programma]:
ECONOMETRICS
· The nature of econometrics and economic data
· Regression analysis with cross sectional data
· Linear Regression with One Regressor
· Linear Regression with Multiple Regressors
· Hypothesis Testing
· Large samples
· Further issues in the linear regression model
· Instrumental Variable Regression (IV-TSLS)
· Regression with a Binary Dependent Variable
· Regression with pooled cross sections
· Regression with panel data
· Regression with time series data
ECONOMETRICS
· The nature of econometrics and economic data
· Regression analysis with cross sectional data
· Linear Regression with One Regressor
· Linear Regression with Multiple Regressors
· Hypothesis Testing
· Large samples
· Further issues in the linear regression model
· Instrumental Variable Regression (IV-TSLS)
· Regression with a Binary Dependent Variable
· Regression with pooled cross sections
· Regression with panel data
· Regression with time series data
Metodi didattici
20 lezioni da due ore
Materiale di riferimento
[Materiale di riferimento]:
ECONOMETRICS
Il libro di riferimento e':
∙ Wooldridge, J., 2003. Introductory econometrics, 2nd ed., South Western College Publishing.
ECONOMETRICS
Il libro di riferimento e':
∙ Wooldridge, J., 2003. Introductory econometrics, 2nd ed., South Western College Publishing.
Moduli o unità didattiche
Modulo 1
SPS/04 - SCIENZA POLITICA - CFU: 6
Lezioni: 40 ore
Docenti:
Cantu' Paola, Iacone Fabrizio
Turni:
-
Docenti:
Cantu' Paola, Iacone Fabrizio
Modulo 2
SECS-P/05 - ECONOMETRIA - CFU: 6
Lezioni: 40 ore
Docente:
Iacone Fabrizio
Turni:
-
Docente:
Iacone FabrizioDocente/i
Ricevimento:
Wednesday, 11AM to 1PM. Please email me to arrange an appointment
Stanza 4 (DEMM Secondo piano)