Architectures for big data
A.A. 2020/2021
Obiettivi formativi
The course aims at describing the big data processing framework, both in terms of methodologies and technologies. Part of the lessons will focus on Apache Spark and distributed patterns.
Risultati apprendimento attesi
Students will learn:
How to distribute computation over clusters using Map Reduce model
How to write Apache Spark code
How Hadoop works and why it works that way
What a software architecture is
How to design batch architectures to manage data workflows
Several design patterns that could be used in a distributed environment
The limit of traditional SQL with Big Data
How to distribute computation over clusters using Map Reduce model
How to write Apache Spark code
How Hadoop works and why it works that way
What a software architecture is
How to design batch architectures to manage data workflows
Several design patterns that could be used in a distributed environment
The limit of traditional SQL with Big Data
Periodo: Primo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Periodo
Primo semestre
INF/01 - INFORMATICA - CFU: 6
Lezioni: 48 ore
Docente:
Condorelli Andrea