Basi molecolari della vita
A.A. 2020/2021
Obiettivi formativi
Il corso si propone di:
a) spiegare i meccanismi molecolari/cellulari relativi a sistemi biologici umani e comprendere la genesi degli stati patologici;
b) spiegare la relazione struttura-funzione delle macromolecole;
c) descrivere la comunicazione intra- e inter-cellulare dei tessuti e dei sistemi con particolare riferimento ai sistemi muscolare, nervoso, respiratorio, digerente, coagulativo, scheletrico, immunitario, ematologico;
d) comprendere i processi biochimici dal punto di vista degli outcomes fisiologici e patologici;
e) conoscere i meccanismi molecolari coinvolti nei processi patologici, lo sviluppo di strategie diagnostiche innovative e il loro ruolo nella Medicina Personalizzata
a) spiegare i meccanismi molecolari/cellulari relativi a sistemi biologici umani e comprendere la genesi degli stati patologici;
b) spiegare la relazione struttura-funzione delle macromolecole;
c) descrivere la comunicazione intra- e inter-cellulare dei tessuti e dei sistemi con particolare riferimento ai sistemi muscolare, nervoso, respiratorio, digerente, coagulativo, scheletrico, immunitario, ematologico;
d) comprendere i processi biochimici dal punto di vista degli outcomes fisiologici e patologici;
e) conoscere i meccanismi molecolari coinvolti nei processi patologici, lo sviluppo di strategie diagnostiche innovative e il loro ruolo nella Medicina Personalizzata
Risultati apprendimento attesi
Gli studenti:
a) conoscono i meccanismi molecolari e biochimici alla base dei sistemi biologici e le variazioni presenti in salute e malattia;
b) conoscono le basi della medicina molecolare, traslazionale e personalizzata, nonché della biochimica dei sistemi;
c) sviluppano la capacità di identificare e approfondire mediante la letteratura scientifica internazionale gli argomenti trattati nel corso per la compilazione di una mini-review in lingua inglese.
a) conoscono i meccanismi molecolari e biochimici alla base dei sistemi biologici e le variazioni presenti in salute e malattia;
b) conoscono le basi della medicina molecolare, traslazionale e personalizzata, nonché della biochimica dei sistemi;
c) sviluppano la capacità di identificare e approfondire mediante la letteratura scientifica internazionale gli argomenti trattati nel corso per la compilazione di una mini-review in lingua inglese.
Periodo: Primo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Le lezioni del primo semestre si svolgeranno in modalità mista:
· in presenza in aula con un numero contingentato di studenti, che si sono prenotati utilizzando le credenziali unimi di e-mail mediante l'app "lezioniUnimi" (https://www.unimi.it/it/studiare/frequentare-un-corso-di-laurea/seguire-il-percorso-di-studi/orari-delle-lezioni) e contemporaneamente in sincrono tramite "piattaforma Teams" per gli studenti non presenti;
· Lo studente ha l'obbligo di portare la mascherina chirurgica per tutta la durata della sua permanenza in aula e di sedere nei posti liberi rispettando l'alternanza di: un posto occupato, un posto libero, un posto occupato, un posto libero, un posto occupato, un posto libero, etc per singola fila;
· le lezioni saranno anche video-registrate per consentire a studenti impossibilitati per documentate esigenze a seguirle in sincrono e rese disponibili sul sito Ariel del docente;
· le lezioni si svolgeranno presso il polo San Paolo al 3° piano del Blocco C come di consueto, prevedendo un ingresso dal blocco C e un'uscita dai blocchi laterali (dalle aule Pauling e Fleming verso il blocco B e dalle aule Curie, Golgi e Pasteur verso il blocco A).
Gli studenti devono entrare dall'atrio principale (piano R) dell'ospedale San Paolo e sottoporsi alla misurazione della temperatura corporea tramite Termo-scanner. Si consiglia vivamente di utilizzare le scale per raggiungere o lasciare le aule.
NB per ogni ulteriore informazione consultare il sito unimi.it: (Home Studiare Frequentare un corso di laurea Seguire il percorso di studi Orari delle lezioni)
· in presenza in aula con un numero contingentato di studenti, che si sono prenotati utilizzando le credenziali unimi di e-mail mediante l'app "lezioniUnimi" (https://www.unimi.it/it/studiare/frequentare-un-corso-di-laurea/seguire-il-percorso-di-studi/orari-delle-lezioni) e contemporaneamente in sincrono tramite "piattaforma Teams" per gli studenti non presenti;
· Lo studente ha l'obbligo di portare la mascherina chirurgica per tutta la durata della sua permanenza in aula e di sedere nei posti liberi rispettando l'alternanza di: un posto occupato, un posto libero, un posto occupato, un posto libero, un posto occupato, un posto libero, etc per singola fila;
· le lezioni saranno anche video-registrate per consentire a studenti impossibilitati per documentate esigenze a seguirle in sincrono e rese disponibili sul sito Ariel del docente;
· le lezioni si svolgeranno presso il polo San Paolo al 3° piano del Blocco C come di consueto, prevedendo un ingresso dal blocco C e un'uscita dai blocchi laterali (dalle aule Pauling e Fleming verso il blocco B e dalle aule Curie, Golgi e Pasteur verso il blocco A).
Gli studenti devono entrare dall'atrio principale (piano R) dell'ospedale San Paolo e sottoporsi alla misurazione della temperatura corporea tramite Termo-scanner. Si consiglia vivamente di utilizzare le scale per raggiungere o lasciare le aule.
NB per ogni ulteriore informazione consultare il sito unimi.it: (Home Studiare Frequentare un corso di laurea Seguire il percorso di studi Orari delle lezioni)
Prerequisiti
Lo studente utilizzerà le informazioni apprese nei corsi di Biologia e Chimica e Biochimica per spiegare i meccanismi relativi ad alcuni sistemi biologici umani e le origini di alcuni stati patologici.
Modalità di verifica dell’apprendimento e criteri di valutazione
Il corso è suddiviso in due moduli, Biochimica Sistematica Umana (6 CFU) e Medicina Molecolare (3 CFU).
Per il modulo Biochimica Sistematica Umana, la verifica consiste in una prova al computer (multiple choice questions) in cui saranno proposti 31 quiz sugli argomenti trattati, e lo studente deve selezionare l'unica risposta esatta fra 5 proposte. Il voto finale sarà la somma delle risposte esatte, tenendo conto che ogni riposta errata sarà penalizzata con -0.25 punti.
Per il modulo Medicina Molecolare, la verifica consiste nella presentazione di una minireview seguita da un momento di confronto sull'elaborato e da valutazione in trentesimi.
Il voto finale del Corso Integrato sarà la media ottenuta pesando i due moduli in base ai CFU erogati.
Per il modulo Biochimica Sistematica Umana, la verifica consiste in una prova al computer (multiple choice questions) in cui saranno proposti 31 quiz sugli argomenti trattati, e lo studente deve selezionare l'unica risposta esatta fra 5 proposte. Il voto finale sarà la somma delle risposte esatte, tenendo conto che ogni riposta errata sarà penalizzata con -0.25 punti.
Per il modulo Medicina Molecolare, la verifica consiste nella presentazione di una minireview seguita da un momento di confronto sull'elaborato e da valutazione in trentesimi.
Il voto finale del Corso Integrato sarà la media ottenuta pesando i due moduli in base ai CFU erogati.
Biochimica
Programma
ERITROCITI
COMPOSIZIONE DEL SANGUE. Necessità degli anticoagulanti; Eritrociti ed ematocrito; Siero e plasma; Eritropoiesi.
OSSIGENO. Cenni di fisica.
MIOGLOBINA ED EMOGLOBINA NEL TRASPORTO DELL'OSSIGENO. Struttura e funzione dell'eme; Metaemoglobina; Differenze spettrofotometriche fra ossi- e deossi-globine; Contenuto di ossigeno.
STRUTTURA DI EMOGLOBINA. Curva di equilibrio per l'ossigeno e P50; Allosterismo; Meccanismi molecolari durante la transizione deossi-ossi emoglobina; Effettori allosterici; Effetto Bohr; Anidride carbonica e 2,3-difosfoglicerato; Monossido e biossido di carbonio; Forme in cui CO2 si presenta nel sangue.
GENETICA DELL'EMOGLOB!NA. Varianti; Selezione naturale e conservazione; Patologia molecolare di emoglobina; Emoglobina S e resistenza alla malaria; Emoglobina fetale e 2,3-DPG; Talassemie.
ASPETTI CLINICI. Parametri ematici primari e derivati; Emoglobina glicata; Ruolo dell'ossido nitrico.
TRASPORTATORI ARTIFICIALI DI OSSIGENO. Cenni sull'utilizzo e chimica.
METABOLISMO DEL FERRO. Assorbimento del ferro; Transferrina e Ferritina; Gestione degli stati di carenza e sovraccarico di ferro.
METABOLISMO DELL'EME. Porfirie; Destini della bilirubina e ittero.
PLASMA
PROTEINE DEL PLASMA. Generalità.
PRESSIONE ONCOTICA. Pressione osmotica e oncotica o colloidale; Regolazione della distribuzione dei liquidi e genesi dell'edema tissutale.
SIGNIFICATO CLINICO DELLE PROTEINE DEL PLASMA. Albumina; Rapporto albumina/globuline; Proteine di trasporto di ioni metallici; a1-antItripsina; Aptoglobina e destino degli eritrociti; Acute phase proteins; Elettroforesi delle proteine; Isoenzimi; Significato delle loro alterazioni.
SISTEMA IMMUNITARIO. Componenti molecolari e cellulari del sistema immunitario e meccanismi delle risposte immunitarie; Teoria della selezione clonale, versatilità, specificità e memoria delle risposte immunitarie; Struttura delle immunoglobuline e relazioni struttura-funzione; Classi di immunoglobuline; Generazione della diversità delle immunoglobuline; Utilizzo delle Ig come strumenti diagnostici.
COAGULAZIONE. Principi di emostasi e triade di Virchow; Piastrine; Caratteristiche principali dei sistemi intrinseco ed estrinseco di attivazione del fattore X; Meccanismi di attivazione della trombina e ruolo della vitamina K; Attivazione della fibrina; Controllo della coagulazione e dell'aggregazione piastrinica; Emofilie.
GLICOPROTEINE E MATRICE EXTRACELLULARE
FUNZIONI E STRUTTURA. N- e O-glicoproteine; Sequon; Tipi di glicoproteine N-glicosilate; Biosintesi delle glicoprotelne e via secretoria; Biosintesi del polisaccaride; Processamento e degradazione delle glicoproteine; Malattie e disfunzioni metaboliche imputabili alle glicoproteine; Sistema ABO.
PROTEOGLICANI. Classi di glucosilaminoglicani; Struttura dei proteoglicani; Principali tipi di proteoglicani; Funzioni e fisiopatologia dei proteoglicani; Differenze fra glicoproteine e proteoglicani.
COLLAGENE. Ultrastruttura delle fibrille; Struttura molecolare dei tipi di collagene; Legami intra- e inter-molecolari; Composizione in aminoacidi; Modificazioni post-translazionali di alcuni aminoacidi; Carboidrati; Biosintesi del collagene; Patologie principali del collagene.
PROTEINE NON-COLLAGENE DELLA MATRICE EXTRACELLULARE. Elastina e patologie principali; Fibronectina, ruolo delle isoforme; Laminina.
ORMONI E COMUNICAZIONE INTRACELLULARE
TRASDUZIONE DEL SEGNALE. Meccanismi generali e interazione coi recettori; Proteina G e recettori beta adrenergici; cAMP; Fosfatidil inositolo difosfato; Fosfolipasi A2; Prostaglandine e leucotrieni; Trasduzione del segnale per ormoni steroidei e tiroidei.
ORMONI. Classificazione funzionale degli ormoni; Interazioni ormone-recettore; Agonisti e antagonisti; Cascate ormonali da stimoti neuro-sensoriali; Ormoni ipofisari e ipotalamici; Asse ipotalamo-ipofisi-tiroide; Asse ipotaIamo-ipofisi-surrenali e ormoni della corteccia surrenalica; Glucocorticoidi, mineralocorticoidi e androgeni; Biosintesi e secrezione degli ormoni steroidei; Asse ipotalamo-ipofisi-gonadi; Asse dell'ormone della crescita; Asse della prolattina; Catecolamine; Ormoni pancreatici.
METABOLISMO DI CALCIO E FOSFATO
CALCIO. Distribuzione nell'organismo, fabbisogno e flussi di calcio e fosfato; Ormone paratiroideo, calcitonina e vitamina D; Osteoporosi, osteomalacia e rachitismo; Il rimodellamento osseo; Osteoblasti e crescita ossea; Osteoclasti e demineralizzazione; Il calcio nelle ossa e nei denti; Cariogenicità; Il fluoro.
ACQUA ED ELETTROLITI
DISTRIBUZIONE DI ACQUA, CATIONI E ANIONI. Distribuzione dell'acqua nell'organismo; Anion Gap; Cationi e anioni; Bilancio dell'acqua.
SISTEMI ACIDO-BASE E LORO REGOLAZIONE. Richiami, sistemi tampone; Forza del tampone; Difese dell'organismo contro CO2 e H+; Sistemi tampone del sangue; Sistema CO2-bicarbonato; Reazione di idratazione della CO2; Equazione di Henderson-Hasselbalch.
COMPENSAZIONI ACIDO-BASE. Diagramma pH-bicarbonati; Misure che danno informazioni sullo stato-base nel feto; Genesi delle principali patologie acido/base; Meccanismi dl compensazione delle patologie acido-base, renali e respiratorie; Controllo renale e secrezione di H+; Tamponi dalle urine.
BIOCHIMICA DEL RENE. Funzioni principali del rene; Il nefrone, unità funzionale del rene; Struttura del glomerulo renale; Meccanismo della filtrazione glomerulare; Composizione e tonicità del filtrato glomerulare; Diffusione di acqua, proteine, glucosio, creatinina, aminoacidi e altri ioni; Meccanismo del riassorbimento di Na e di altri componenti; Misura della clearance; Potassio; Aquaporine.
MUSCOLO
STRUTTURA E ULTRASTRUTTURA. Differenze morfologiche fra muscoli scheletrici, cardiaci e lisci; Funzioni non meccaniche del muscolo; Sliding filament model; Rapporto fra tensione sviluppata e cross-bridges; Proteine dei filamenti sottili e spessi; Miosina; Actina; Titina e nebulina; Distrofina; Polimerizzazione di actina e treadmilling; Tropomiosina e troponina; Interazione actina-miosina; Conformazione della troponina.
RUOLO DI Ca++. Meccanismi di ingresso del Ca++; Reticolo sarcoplasmico; Recettori sensibili alla diidropiridina e alla rianodina; Ca-antagonisti e blocco dei canali del Na.
VARI TIPI DI MUSCOLO. Principi di bioenergetica, ATP e fosfocreatina; Fibre rosse e bianche; Risposte metaboliche all'esercizio e utilizzo dei substrati; Muscolo scheletrico e cardiaco; Ruolo di fosfocreatina e adenilato chinasi; Ischemia cardiaca: Contrazione del muscolo liscio.
UNITÀ CONTRATTILI NON MUSCOLARI. Altri ruoli dell'actina; Alfa-actinina.
RADICALI LIBERI E STRESS OSSIDATIVO
CHIMICA E MECCANISMO DI PROPAGAZIONE. Ossigeno e Reactive Oxygen Species; Ruolo di mitocondri e perossisomi; Altre reazioni biologiche che generano radicali liberi; Radicali liberi centrati su C; Markers del danno da radicali liberi; Radicali liberi centrali su metalli; Ossido nitrico.
SCAVENGERS. Sistemi di scavenging; Antiossidanti e sistemi di controllo dello stress ossidativo.
INVECCHIAMENTO. Fragilità legata all'età; il limite di Hayflick; Telomeri e telomerasi; Teorie dell'invecchiamento.
BIOCHIMICA DELLA RESPIRAZIONE
FUNZIONE RESPIRATORIA. Alveolo, Scambio dei gas e trasporto di O2 e CO2, Oxygen sensing; Ossido nitrico, Monossido di carbonio.
ENDOTELIO. Ruolo di NO e vasocostrizione ipossica polmonare, Elastina, Membrana basale.
EPITELIO. Cellule alveolari e surfattante, Muco, Fibrosi Cistica e CFTR; Edema polmonare e aggiustamenti polmonari all'alta quota. Difesa contro le infezioni.
SISTEMA NERVOSO
IL TESSUTO NERVOSO. Principi metabolici e morfologia; Barriera ematoencefalica; Caratteristiche principali dei neuroni; Sistemi di trasporto neuronali; Sinapsi elettriche e chimiche; Ruolo di Na+/K+ ATPasi; Canali ionici, depolarizzazione della membrana e potenziale di azione
SINAPSI CHIMICHE E NEUROTRASMETTTORI. Vescicole sinaptiche; Modalità di trasmissione neuronale; Glutammato e GABA; Catecolamine, adrenalina e noradrenalina; Dopamina; Serotonina o idrossltriptamina; Acetilcolina e cenni sugli altri neurotrasmettitori.
MECCANISMO DELLA VISIONE. Morfologia di retina e bastoncelli; Rodopsina; Vitamina A o retinale; lsomerizzazione del retinale; Meccanismi dell'effetto sull'ingresso di Na+ e iperpolarizzazione; Visione a colori e ruolo dei coni; Daltonismo. Metabolismo della retina, utilizzo del glucosio; Cristallino e omeostasi delle proteine; Cataratta senile e diabetica.
SENSI. Trasduzione sensoriale; Olfatto; Udito; Gusto.
COMPOSIZIONE DEL SANGUE. Necessità degli anticoagulanti; Eritrociti ed ematocrito; Siero e plasma; Eritropoiesi.
OSSIGENO. Cenni di fisica.
MIOGLOBINA ED EMOGLOBINA NEL TRASPORTO DELL'OSSIGENO. Struttura e funzione dell'eme; Metaemoglobina; Differenze spettrofotometriche fra ossi- e deossi-globine; Contenuto di ossigeno.
STRUTTURA DI EMOGLOBINA. Curva di equilibrio per l'ossigeno e P50; Allosterismo; Meccanismi molecolari durante la transizione deossi-ossi emoglobina; Effettori allosterici; Effetto Bohr; Anidride carbonica e 2,3-difosfoglicerato; Monossido e biossido di carbonio; Forme in cui CO2 si presenta nel sangue.
GENETICA DELL'EMOGLOB!NA. Varianti; Selezione naturale e conservazione; Patologia molecolare di emoglobina; Emoglobina S e resistenza alla malaria; Emoglobina fetale e 2,3-DPG; Talassemie.
ASPETTI CLINICI. Parametri ematici primari e derivati; Emoglobina glicata; Ruolo dell'ossido nitrico.
TRASPORTATORI ARTIFICIALI DI OSSIGENO. Cenni sull'utilizzo e chimica.
METABOLISMO DEL FERRO. Assorbimento del ferro; Transferrina e Ferritina; Gestione degli stati di carenza e sovraccarico di ferro.
METABOLISMO DELL'EME. Porfirie; Destini della bilirubina e ittero.
PLASMA
PROTEINE DEL PLASMA. Generalità.
PRESSIONE ONCOTICA. Pressione osmotica e oncotica o colloidale; Regolazione della distribuzione dei liquidi e genesi dell'edema tissutale.
SIGNIFICATO CLINICO DELLE PROTEINE DEL PLASMA. Albumina; Rapporto albumina/globuline; Proteine di trasporto di ioni metallici; a1-antItripsina; Aptoglobina e destino degli eritrociti; Acute phase proteins; Elettroforesi delle proteine; Isoenzimi; Significato delle loro alterazioni.
SISTEMA IMMUNITARIO. Componenti molecolari e cellulari del sistema immunitario e meccanismi delle risposte immunitarie; Teoria della selezione clonale, versatilità, specificità e memoria delle risposte immunitarie; Struttura delle immunoglobuline e relazioni struttura-funzione; Classi di immunoglobuline; Generazione della diversità delle immunoglobuline; Utilizzo delle Ig come strumenti diagnostici.
COAGULAZIONE. Principi di emostasi e triade di Virchow; Piastrine; Caratteristiche principali dei sistemi intrinseco ed estrinseco di attivazione del fattore X; Meccanismi di attivazione della trombina e ruolo della vitamina K; Attivazione della fibrina; Controllo della coagulazione e dell'aggregazione piastrinica; Emofilie.
GLICOPROTEINE E MATRICE EXTRACELLULARE
FUNZIONI E STRUTTURA. N- e O-glicoproteine; Sequon; Tipi di glicoproteine N-glicosilate; Biosintesi delle glicoprotelne e via secretoria; Biosintesi del polisaccaride; Processamento e degradazione delle glicoproteine; Malattie e disfunzioni metaboliche imputabili alle glicoproteine; Sistema ABO.
PROTEOGLICANI. Classi di glucosilaminoglicani; Struttura dei proteoglicani; Principali tipi di proteoglicani; Funzioni e fisiopatologia dei proteoglicani; Differenze fra glicoproteine e proteoglicani.
COLLAGENE. Ultrastruttura delle fibrille; Struttura molecolare dei tipi di collagene; Legami intra- e inter-molecolari; Composizione in aminoacidi; Modificazioni post-translazionali di alcuni aminoacidi; Carboidrati; Biosintesi del collagene; Patologie principali del collagene.
PROTEINE NON-COLLAGENE DELLA MATRICE EXTRACELLULARE. Elastina e patologie principali; Fibronectina, ruolo delle isoforme; Laminina.
ORMONI E COMUNICAZIONE INTRACELLULARE
TRASDUZIONE DEL SEGNALE. Meccanismi generali e interazione coi recettori; Proteina G e recettori beta adrenergici; cAMP; Fosfatidil inositolo difosfato; Fosfolipasi A2; Prostaglandine e leucotrieni; Trasduzione del segnale per ormoni steroidei e tiroidei.
ORMONI. Classificazione funzionale degli ormoni; Interazioni ormone-recettore; Agonisti e antagonisti; Cascate ormonali da stimoti neuro-sensoriali; Ormoni ipofisari e ipotalamici; Asse ipotalamo-ipofisi-tiroide; Asse ipotaIamo-ipofisi-surrenali e ormoni della corteccia surrenalica; Glucocorticoidi, mineralocorticoidi e androgeni; Biosintesi e secrezione degli ormoni steroidei; Asse ipotalamo-ipofisi-gonadi; Asse dell'ormone della crescita; Asse della prolattina; Catecolamine; Ormoni pancreatici.
METABOLISMO DI CALCIO E FOSFATO
CALCIO. Distribuzione nell'organismo, fabbisogno e flussi di calcio e fosfato; Ormone paratiroideo, calcitonina e vitamina D; Osteoporosi, osteomalacia e rachitismo; Il rimodellamento osseo; Osteoblasti e crescita ossea; Osteoclasti e demineralizzazione; Il calcio nelle ossa e nei denti; Cariogenicità; Il fluoro.
ACQUA ED ELETTROLITI
DISTRIBUZIONE DI ACQUA, CATIONI E ANIONI. Distribuzione dell'acqua nell'organismo; Anion Gap; Cationi e anioni; Bilancio dell'acqua.
SISTEMI ACIDO-BASE E LORO REGOLAZIONE. Richiami, sistemi tampone; Forza del tampone; Difese dell'organismo contro CO2 e H+; Sistemi tampone del sangue; Sistema CO2-bicarbonato; Reazione di idratazione della CO2; Equazione di Henderson-Hasselbalch.
COMPENSAZIONI ACIDO-BASE. Diagramma pH-bicarbonati; Misure che danno informazioni sullo stato-base nel feto; Genesi delle principali patologie acido/base; Meccanismi dl compensazione delle patologie acido-base, renali e respiratorie; Controllo renale e secrezione di H+; Tamponi dalle urine.
BIOCHIMICA DEL RENE. Funzioni principali del rene; Il nefrone, unità funzionale del rene; Struttura del glomerulo renale; Meccanismo della filtrazione glomerulare; Composizione e tonicità del filtrato glomerulare; Diffusione di acqua, proteine, glucosio, creatinina, aminoacidi e altri ioni; Meccanismo del riassorbimento di Na e di altri componenti; Misura della clearance; Potassio; Aquaporine.
MUSCOLO
STRUTTURA E ULTRASTRUTTURA. Differenze morfologiche fra muscoli scheletrici, cardiaci e lisci; Funzioni non meccaniche del muscolo; Sliding filament model; Rapporto fra tensione sviluppata e cross-bridges; Proteine dei filamenti sottili e spessi; Miosina; Actina; Titina e nebulina; Distrofina; Polimerizzazione di actina e treadmilling; Tropomiosina e troponina; Interazione actina-miosina; Conformazione della troponina.
RUOLO DI Ca++. Meccanismi di ingresso del Ca++; Reticolo sarcoplasmico; Recettori sensibili alla diidropiridina e alla rianodina; Ca-antagonisti e blocco dei canali del Na.
VARI TIPI DI MUSCOLO. Principi di bioenergetica, ATP e fosfocreatina; Fibre rosse e bianche; Risposte metaboliche all'esercizio e utilizzo dei substrati; Muscolo scheletrico e cardiaco; Ruolo di fosfocreatina e adenilato chinasi; Ischemia cardiaca: Contrazione del muscolo liscio.
UNITÀ CONTRATTILI NON MUSCOLARI. Altri ruoli dell'actina; Alfa-actinina.
RADICALI LIBERI E STRESS OSSIDATIVO
CHIMICA E MECCANISMO DI PROPAGAZIONE. Ossigeno e Reactive Oxygen Species; Ruolo di mitocondri e perossisomi; Altre reazioni biologiche che generano radicali liberi; Radicali liberi centrati su C; Markers del danno da radicali liberi; Radicali liberi centrali su metalli; Ossido nitrico.
SCAVENGERS. Sistemi di scavenging; Antiossidanti e sistemi di controllo dello stress ossidativo.
INVECCHIAMENTO. Fragilità legata all'età; il limite di Hayflick; Telomeri e telomerasi; Teorie dell'invecchiamento.
BIOCHIMICA DELLA RESPIRAZIONE
FUNZIONE RESPIRATORIA. Alveolo, Scambio dei gas e trasporto di O2 e CO2, Oxygen sensing; Ossido nitrico, Monossido di carbonio.
ENDOTELIO. Ruolo di NO e vasocostrizione ipossica polmonare, Elastina, Membrana basale.
EPITELIO. Cellule alveolari e surfattante, Muco, Fibrosi Cistica e CFTR; Edema polmonare e aggiustamenti polmonari all'alta quota. Difesa contro le infezioni.
SISTEMA NERVOSO
IL TESSUTO NERVOSO. Principi metabolici e morfologia; Barriera ematoencefalica; Caratteristiche principali dei neuroni; Sistemi di trasporto neuronali; Sinapsi elettriche e chimiche; Ruolo di Na+/K+ ATPasi; Canali ionici, depolarizzazione della membrana e potenziale di azione
SINAPSI CHIMICHE E NEUROTRASMETTTORI. Vescicole sinaptiche; Modalità di trasmissione neuronale; Glutammato e GABA; Catecolamine, adrenalina e noradrenalina; Dopamina; Serotonina o idrossltriptamina; Acetilcolina e cenni sugli altri neurotrasmettitori.
MECCANISMO DELLA VISIONE. Morfologia di retina e bastoncelli; Rodopsina; Vitamina A o retinale; lsomerizzazione del retinale; Meccanismi dell'effetto sull'ingresso di Na+ e iperpolarizzazione; Visione a colori e ruolo dei coni; Daltonismo. Metabolismo della retina, utilizzo del glucosio; Cristallino e omeostasi delle proteine; Cataratta senile e diabetica.
SENSI. Trasduzione sensoriale; Olfatto; Udito; Gusto.
Metodi didattici
Il programma sarà svolto esclusivamente attraverso lezioni frontali con l'ausilio di materiale didattico (proiezioni di slide e/o filmati), con possibili interventi di qualificati docenti esterni.
Materiale di riferimento
· J.W.Baynes, M.H.Dominiczak, Biochimica per le discipline biomediche, 2° edizione, Casa Editrice Ambrosiana.
· T.M.Devlin, Biochimica, Seconda Edizione Italiana sulla Terza Edizione Americana, Gnocchi.
· P.Champe, R.A.Harvey, D.R.Ferrier, Le basi della biochimica, Zanichelli.
· D.L.Nelson, M.M.Cox, I principi di biochimica, 4° edizione, Zanichelli
· T.M.Devlin, Biochimica, Seconda Edizione Italiana sulla Terza Edizione Americana, Gnocchi.
· P.Champe, R.A.Harvey, D.R.Ferrier, Le basi della biochimica, Zanichelli.
· D.L.Nelson, M.M.Cox, I principi di biochimica, 4° edizione, Zanichelli
Biologia molecolare
Programma
Viene introdotto il concetto di "Medicina di precisione" a seguito delle crescenti conoscenze in genetica e biologia molecolare associate alla disponibilità di dati clinici che proiettano nuove opportunità di personalizzare la cura e la gestione clinica del paziente.
SINDROMI MONOGENICHE
Vengono introdotte le caratteristiche di eterogeneità genotipica/fenotipica in alcuni contesti sindromici monogenici, le criticità diagnostiche e le metodologie utilizzate per rilevarne le anomalie molecolari.
· Patologie dei cromosomi sessuali. Il lato molecolare delle anomalie del cromosoma sessuale. Sindrome di Turner: un modello semplice di alterazioni complesse.
· Imprinting genomico. Equilibri parentali nel controllo del dosaggio genico e delle sindromi speculari di Angelman e Prader-Willi
GENETICA MOLECOLARE DELLA SINDROME MEN2: RET 'ON AIR'
Le sindromi MEN2 sono discusse come modello molecolare di alterazione dei 'recettori tirosin chinasici'; un esempio di gestione clinica/molecolare in endocrinologia.
INSTABILITÀ GENOMICA
I concetti di instabilità genetica/cromosomica sono discussi con una panoramica su alcuni modelli proposti per la comprensione del fenomeno che agisce come motore nella trasformazione neoplastica.
· Sindrome di Li Fraumeni. Paradigma dei meccanismi con cui la progressione neoplastica acquisisce funzioni. p53 è la molecola "onco-soppressore" per eccellenza, la sindrome correlata ci guida nelle dinamiche del suo meccanismo d'azione.
· Elicasi RecQ: guerdiani del genoma. Le helicase RecQ rappresentano i guardiani del genoma, un modello di controllo della stabilità genomica, un paradigma sindromico la perdita della loro funzione.
BASI MOLECOLARI DELL'INVECCHIAMENTO E MALATTIE CORRELATE
Esploreremo le cause biologiche dell'invecchiamento analizzando in dettaglio i meccanismi molecolari coinvolti, discutendo le implicazioni dell'invecchiamento nello sviluppo di malattie
AMBIENTE ED EPIGENETICA NELLO SVILUPPO DELLE MALATTIE
Analizzeremo il ruolo dei meccanismi epigenetici e il loro contributo allo sviluppo di malattie. Approfondiremo ulteriormente il concetto di epigenetica strettamente legato al ruolo che l'ambiente gioca nello sviluppo di malattie discutendo le sue implicazioni molecolari.
MECCANISMI MOLECOLARI COINVOLTI NELLO SVILUPPO DEI TUMORI
Esploreremo i principali percorsi molecolari coinvolti nello sviluppo di diversi tipi di tumore umano analizzando il loro ruolo nella normale funzione cellulare e l'omeostasi, nonché le loro proprietà oncogeniche. Discuteremo anche di come i nuovi approcci tecnologici consentano di scoprire vulnerabilità molecolari che si aprono verso approcci efficaci di medicina personalizzata.
BASI MOLECOLARI DELLE MALATTIE ONCOEMATOLOGICHE
· I 'landscapes' molecolari della Leucemia Acuta Mieloide. Le leucemie mieloidi acute sono neoplasie con bassa instabilità genetica, valuteremo ciò che emerge dai profili genomici e molecolari di nuova generazione
· Leucemie 'Core Binding Factor': una storia senza fine. Leucemia CBF; un modello di progressione multi-step che armonizza la genetica e l'epigenetica in un continuum molecolare in grado di suggerire nuovi approcci terapeutici.
· A->I RNA 'Editing': il lato "ADAR" del cancro. Viene discussa una delle modifiche post-trascrizionali più rilevanti tra le funzioni di plasticità del genoma e il suo ruolo bivalente nella trasformazione neoplastica.
· Malattia mieloproliferativa nei soggetti portatori di trisomia 21: un enigma del dosaggio. La suscettibilità alla leucemia nei soggetti Down, un aspetto poco conosciuto rappresenta una sfida interpretativa che coinvolge i meccanismi di controllo del dosaggio genico.
INGEGNERIA GENETICA E CELLULARE
Analizzeremo le basi molecolari che consentono di manipolare l'identità delle cellule e il loro contenuto genetico discutendo strategie tecnologiche e potenziali approcci terapeutici.
SINDROMI MONOGENICHE
Vengono introdotte le caratteristiche di eterogeneità genotipica/fenotipica in alcuni contesti sindromici monogenici, le criticità diagnostiche e le metodologie utilizzate per rilevarne le anomalie molecolari.
· Patologie dei cromosomi sessuali. Il lato molecolare delle anomalie del cromosoma sessuale. Sindrome di Turner: un modello semplice di alterazioni complesse.
· Imprinting genomico. Equilibri parentali nel controllo del dosaggio genico e delle sindromi speculari di Angelman e Prader-Willi
GENETICA MOLECOLARE DELLA SINDROME MEN2: RET 'ON AIR'
Le sindromi MEN2 sono discusse come modello molecolare di alterazione dei 'recettori tirosin chinasici'; un esempio di gestione clinica/molecolare in endocrinologia.
INSTABILITÀ GENOMICA
I concetti di instabilità genetica/cromosomica sono discussi con una panoramica su alcuni modelli proposti per la comprensione del fenomeno che agisce come motore nella trasformazione neoplastica.
· Sindrome di Li Fraumeni. Paradigma dei meccanismi con cui la progressione neoplastica acquisisce funzioni. p53 è la molecola "onco-soppressore" per eccellenza, la sindrome correlata ci guida nelle dinamiche del suo meccanismo d'azione.
· Elicasi RecQ: guerdiani del genoma. Le helicase RecQ rappresentano i guardiani del genoma, un modello di controllo della stabilità genomica, un paradigma sindromico la perdita della loro funzione.
BASI MOLECOLARI DELL'INVECCHIAMENTO E MALATTIE CORRELATE
Esploreremo le cause biologiche dell'invecchiamento analizzando in dettaglio i meccanismi molecolari coinvolti, discutendo le implicazioni dell'invecchiamento nello sviluppo di malattie
AMBIENTE ED EPIGENETICA NELLO SVILUPPO DELLE MALATTIE
Analizzeremo il ruolo dei meccanismi epigenetici e il loro contributo allo sviluppo di malattie. Approfondiremo ulteriormente il concetto di epigenetica strettamente legato al ruolo che l'ambiente gioca nello sviluppo di malattie discutendo le sue implicazioni molecolari.
MECCANISMI MOLECOLARI COINVOLTI NELLO SVILUPPO DEI TUMORI
Esploreremo i principali percorsi molecolari coinvolti nello sviluppo di diversi tipi di tumore umano analizzando il loro ruolo nella normale funzione cellulare e l'omeostasi, nonché le loro proprietà oncogeniche. Discuteremo anche di come i nuovi approcci tecnologici consentano di scoprire vulnerabilità molecolari che si aprono verso approcci efficaci di medicina personalizzata.
BASI MOLECOLARI DELLE MALATTIE ONCOEMATOLOGICHE
· I 'landscapes' molecolari della Leucemia Acuta Mieloide. Le leucemie mieloidi acute sono neoplasie con bassa instabilità genetica, valuteremo ciò che emerge dai profili genomici e molecolari di nuova generazione
· Leucemie 'Core Binding Factor': una storia senza fine. Leucemia CBF; un modello di progressione multi-step che armonizza la genetica e l'epigenetica in un continuum molecolare in grado di suggerire nuovi approcci terapeutici.
· A->I RNA 'Editing': il lato "ADAR" del cancro. Viene discussa una delle modifiche post-trascrizionali più rilevanti tra le funzioni di plasticità del genoma e il suo ruolo bivalente nella trasformazione neoplastica.
· Malattia mieloproliferativa nei soggetti portatori di trisomia 21: un enigma del dosaggio. La suscettibilità alla leucemia nei soggetti Down, un aspetto poco conosciuto rappresenta una sfida interpretativa che coinvolge i meccanismi di controllo del dosaggio genico.
INGEGNERIA GENETICA E CELLULARE
Analizzeremo le basi molecolari che consentono di manipolare l'identità delle cellule e il loro contenuto genetico discutendo strategie tecnologiche e potenziali approcci terapeutici.
Metodi didattici
Il programma sarà svolto esclusivamente attraverso lezioni frontali con l'ausilio di materiale didattico (proiezioni di slide e/o filmati), con possibili interventi di qualificati docenti esterni.
Materiale di riferimento
· F.Amaldi, P.Benedetti, G.Pesole, P.Plevani. Biologia Molecolare terza ed. Editrice Ambrosiana.
· V.T. DeVita, T.S. Lawrance, S.A. Rosenberg. Cancer: Principles & Practice of Oncology. Primer of the Molecular Biology of Cancer. Lippincott Williams & Wilkins
· V.T. DeVita, T.S. Lawrance, S.A. Rosenberg. Cancer: Principles & Practice of Oncology. Primer of the Molecular Biology of Cancer. Lippincott Williams & Wilkins
Moduli o unità didattiche
Biochimica
BIO/10 - BIOCHIMICA - CFU: 6
Lezioni: 72 ore
Docenti:
Caretti Anna, Samaja Michele
Biologia molecolare
BIO/11 - BIOLOGIA MOLECOLARE - CFU: 3
Lezioni: 36 ore
Docenti:
Beghini Alessandro, Pasini Diego
Docente/i
Ricevimento:
previo appuntamento da concordare via e-mail
Ospedale S.Paolo, Via A. Di Rudinì 8, 6°piano Blocco C
Ricevimento:
Su appuntamento, da concordare via mail
Dip. Scienze della Salute, c/o Osp. San Paolo, Via A. di Rudinì 8, Laboratorio di Biochimica, 9 piano, Blocco C,
Ricevimento:
su appuntamento da concordare per e-mail
Via Adamello 16, 20139, Milano (uff. Ed13, piano 1)
Ricevimento:
Lunedi h 14.00-16.00
Laboratorio di Biochimica, 9° piano, blocco C