Geometria 1

A.A. 2020/2021
7
Crediti massimi
64
Ore totali
SSD
MAT/03
Lingua
Italiano
Obiettivi formativi
L'insegnamento si propone di fornire agli studenti alcune conoscenze e competenze di algebra lineare. Partendo dalla nozione di spazio vettoriale di dimensione finita su un campo qualsiasi, si arriva a risolvere i sistemi di equazioni lineari con il metodo di Gauss-Jordan. Sì studiano poi le applicazioni lineari e bilineari, illustrando la nozione di matrice rappresentativa e i relativi problemi di diagonalizzazione. Le applicazioni bilineari vengono poi approfondite con lo studio degli spazi vettoriali euclidei (reali e complessi) e degli operatori autoaggiunti, relativamente ai quali si dimostra il teorema spettrale.
Risultati apprendimento attesi
Al termine del corso, gli studenti avranno acquisito le seguenti abilità:
1. saprà risolvere i sistemi di equazioni lineari;
2. sarà in grado di applicare la teoria degli spazi vettoriali di dimensione finita, riconoscendo sottospazi vettoriali e determinandone delle basi;
3. sarà in grado di studiare le applicazioni lineari, determinandone la matrice rappresentativa, il nucleo e l'immagine;
4. saprà applicare alcuni aspetti della teoria della diagonalizzazione di endomorfismi e di matrici, sulla base della ricerca di autovalori e di autovettori;
5. saprà lavorare in spazi dotati di prodotto scalare definito positivo (detti anche spazi euclidei) e applicare nozioni elementari di geometria euclidea;
6. saprà riconoscere gli operatori autoaggiunti e saprà diagonalizzarli, determinandone una base ortonormale di autovettori mediante il teorema spettrale (reale e complesso).
Programma e organizzazione didattica

CORSO A

Responsabile
Periodo
Secondo semestre
Programma
1. Spazi vettoriali: dipendenza lineare, basi, dimensione.
2. Applicazioni lineari e matrici.
3. Sistemi di equazioni lineari.
4. Operazioni tra matrici; determinante.
5. Endomorfismi; autovalori, autovettori, diagonalizzazione.
6. Applicazioni multilineari (cenni ai tensori).
7. Prodotti scalari. Spazi euclidei
Prerequisiti
Le conoscenze di matematica di base abitualmente impartite nella Scuola Secondaria
Metodi didattici
Tradizionali: lezioni ed esercitazioni frontali.
Tutorato: 2 ore alla settimana.
Materiale di riferimento
1) Dispense del corso sono disponibili nella pagina web del docente
2) Serge Lang - Algebra lineare - Bollati Boringhieri
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame consiste di una prova scritta e una prova orale.
Nella prova scritta verranno assegnati alcuni esercizi a risposta aperta. La durata della prova scritta è commisurata al numero e alla struttura degli esercizi assegnati. Sono previste due prove intermedie che sostituiscono la prova scritta del primo appello.
Alla prova orale accedono solo gli Studenti che hanno superato la prova scritta (o le prove intermedie) dello stesso appello d'esame. Durante la prova orale verrà richiesto di illustrare alcuni risultati del programma dell'insegnamento, ed alcuni esempi, al fine di valutare le conoscenze e la comprensione degli argomenti trattati, nonché la capacità di saperli applicare.
L'esame si intende superato se vengono superate la prova scritta e la prova orale. Il voto è espresso in trentesimi e verrà comunicato immediatamente al termine della prova orale.
MAT/03 - GEOMETRIA - CFU: 7
Esercitazioni: 24 ore
Lezioni: 40 ore

CORSO B

Responsabile
Periodo
Secondo semestre
Programma
1. Spazi vettoriali: dipendenza lineare, basi, dimensione.
2. Applicazioni lineari e matrici.
3. Sistemi di equazioni lineari.
4. Operazioni tra matrici; determinante.
5. Endomorfismi; autovalori, autovettori, diagonalizzazione.
6. Applicazioni multilineari (cenni ai tensori).
7. Prodotti scalari. Spazi euclidei
Prerequisiti
Le conoscenze di matematica di base abitualmente impartite nella Scuola Secondaria
Metodi didattici
Tradizionali: lezioni ed esercitazioni frontali.
Tutorato: 2 ore alla settimana.
Materiale di riferimento
- Dispense del corso sono disponibili nella pagina web del docente
- S. Lang - Algebra Lineare _ Bollati Boringhieri - 2014
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame consiste di una prova scritta e una prova orale.
Nella prova scritta verranno assegnati alcuni esercizi a risposta aperta. La durata della prova scritta è commisurata al numero e alla struttura degli esercizi assegnati. Sono previste due prove intermedie che sostituiscono la prova scritta del primo appello.
Alla prova orale accedono solo gli Studenti che hanno superato la prova scritta (o le prove intermedie) dello stesso appello d'esame. Durante la prova orale verrà richiesto di illustrare alcuni risultati del programma dell'insegnamento, ed alcuni esempi, al fine di valutare le conoscenze e la comprensione degli argomenti trattati, nonché la capacità di saperli applicare.
L'esame si intende superato se vengono superate la prova scritta e la prova orale. Il voto è espresso in trentesimi e verrà comunicato immediatamente al termine della prova orale.
MAT/03 - GEOMETRIA - CFU: 7
Esercitazioni: 24 ore
Lezioni: 40 ore
Docente/i
Ricevimento:
Mercoledì 11:00-12:00 e su appuntamento (inviare email)
Studio 1026, Via Saldini 50 (primo piano)
Ricevimento:
su appuntamento
Dipartimento di Matematica, Ufficio 2100
Ricevimento:
mercoledi ore 15-17
Dipartimento di Matematica
Ricevimento:
Per appuntamento (scrivere e-mail al docente)
studio Turrini - Dip. di Matematica - v. Saldini, 50