Chemistry of natural processes and technologies for the environment

A.A. 2022/2023
Crediti massimi
Ore totali
Obiettivi formativi
The course will provide students with a basic understanding of the chemical fundamentals of the organic natural products and of their role as biologically active compounds in the interrelationship among living organisms to facilitate their communication in and with the environment.
This multidisciplinary course is focused on the impact of natural products and xenobiotics in the context of human and animal health, nutrition and agroecology.
Risultati apprendimento attesi
At the end of the course, the student will acquire a broad knowledge of the chemistry of life in terms of species adaptation to the environment. He/she will also acquire the basis of the application of technologies for the environment and the impact they have on health, nutrition and agroecology.
Programma e organizzazione didattica

Edizione unica

Secondo semestre
The chemistry of life.
The plant and its biochemical adaptation to the environment.
Primary metabolism. Secondary metabolism and functional compounds (isoprenoid, phenolics, alkaloids)
The co-evolutionary arms race: plant defense and animal response.
Plant toxins and their effects on animals. Insect feeding preferences.
Animal pheromones and defense substances.
Biochemical interactions between higher plants.
Higher plants-lower plant interactions: phytoalexins and phytotoxins.
Flavors and natural dyes. Conversion and transformations in the environment.
Green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques; biotransformation.
Principles, instrumentations and analytical applications of techniques for environment monitoring. Spectroscopy: the electromagnetic spectrum, interaction between radiation and matter, chemical structure and absorption of radiation. Lambert-Beer's law. Spectroscopy methods: UV and IR, atomic absorption and ICP-MS. Basics of electrochemical and electroanalytical techniques. Chromatography (gas-solid, liquid-solid, liquid-liquid).
Basics of remediation technologies for cleaning up contaminated sites. Introductory aspects, Generalities of the main organic and inorganic contaminants of concern. VOCs and SVOCs, aromatics and chlorinated solvents, pesticides, PCBs, dioxins, PFOS, PFOA, fuels, main toxic heavy metals. Soil amendments and their chemistry. Soil injection techniques. Anaerobic oxidation, anaerobic bioreactors, biowalls, in-situ chemical reduction, permeable reactive barrier. Soil, water, groundwater, and aquifer types. Groundwater mobility, definition of hydrological parameter and drawdown methods for aquifer testing. Site contamination assessment, contamination types and sources, environmental sampling and investigation. Basics and general aspects of conceptual site modelling. Mass spectrometry tools for contaminants monitoring. Main ion source and detector types. Examples of contaminants mass spectra.
No specific prior knowledge additional to that required to register to the graduation course is needed (basic chemical courses).
Metodi didattici
Classroom lessons.
Materiale di riferimento
J.B. Harborne. Introduction to ecological biochemistry, 2014 Elsevier
Gerd‐Joachim Krauss, Dietrich H. Nies Ecological Biochemistry: Environmental and Interspecies Interactions, 2014 Wiley

O. Sterner Chemistry, Health and Environment, 2nd edition, 2010 Wiley.
James R. Hanson. Natural Products. The secondary metabolites. The Royal Society of Chemistry 2003

Environmental site assessment and remediation. CRC Press. Edited by Yue Rong. 2018 Taylor and Francis Group (available for download at the online UniMI Library System)

S. Manahan. Environmental Chemistry. 10th edition CRC Press

Literature and didactical material provided during classrooms
Modalità di verifica dell’apprendimento e criteri di valutazione
Oral exam (20 min approximately). Students will be asked to discuss a personal written report on the analysis of two case-studies taken from the scientific literature and based on the topics discussed during the classroom lessons.
Lezioni: 64 ore
previo appuntamento
Via Mangiagalli 25 - primo piano - locale 1066
su appuntamento
3016, 3° piano ala B, Dipartimento di Chimica