Metodi matematici della fisica

A.A. 2022/2023
7
Crediti massimi
64
Ore totali
SSD
FIS/02
Lingua
Italiano
Obiettivi formativi
L'insegnamento si propone di introdurre lo studente ai metodi dell'analisi complessa e dell'analisi funzionale. Nonostante il suo carattere introduttivo l'insegnamento vuole anche essere rigoroso, non trascurando gli aspetti dimostrativi piu` significativi. Sono punti fondamentali del programma:
-il concetto di funzione olomorfa e esempi di mappe, espandibilita` in serie di Taylor, teorema di Cauchy e applicazioni, singolarita` isolata e sviluppo di Laurent. Teorema dei residui e integrazione nel piano complesso. Concetto di prolungamento analitico.
-gli spazi di Banach e di Hilbert, esempi di spazi di funzioni. Introduzione agli operatori lineari sugli spazi di Hilbert.
-serie di Fourier e trasformata di Fourier e di Laplace.
-Introduzione alla teoria delle distribuzioni temperate.
Risultati apprendimento attesi
Al termine dell'insegnamento lo studente avra' sviluppato le seguenti abilita`
1)) sapra' maneggiare numeri complessi unitamente alla loro interpretazione geometrica e sapra' svolgere operazioni aritmetiche ed algebriche in campo complesso, studiare mappe nel piano complesso.
2) sapra' effettuare analisi e studio di funzioni (monodrome e polidrome) in campo complesso
3) sapra' calcolare integrali in campo complesso utilizzando tutte le principali tecniche di integrazione in campo complesso basate su teorema di Cauchy e calcolo dei residui
4) avra` conoscenze delle principali proprieta` degli spazi di Hilbert e di Banach, conoscenza di importanti sistemi ortonormali
di funzioni (Hermite, Legendre)
5) avra` conoscenze delle principali proprieta` di operatori lineari limitati come: proiettori, isometrie, operatori unitari, funzione di operatore limitato, nozione di aggiunto ed estensione al caso non limitato. Capacita` calcolative in ambito finito-dimensionale e in semplici esempi infinito-dimensionali
6) avra` conoscenze della teoria delle serie di Fourier, anche per aspetti di convergenza puntuale, e sara` in grado di calcolare
gli sviluppi in serie di semplici funzioni.
7) avra` conoscenza della trasformata integrale di Fourier (e Laplace) in L1 e L2, e del teorema di Riemann-Lebesgue. Sapra` calcolare le principali trasformate, anche con le tecniche di integrazione nel piano complesso.
8) avra` conoscenze di base di teoria delle distribuzioni temperate e delle relative operazioni, conoscenza delle principali distribuzioni (delta, theta, parte principale), derivata e trasformata di Fourier, con applicazionii (identita' di Sokhotskii-Plemelj).
Programma e organizzazione didattica

CORSO A

Responsabile
Periodo
Secondo semestre

Programma
Analisi Complessa: funzioni olomorfe, mappe conformi, problemi di elettrostatica 2D, integrazione complessa, trasformata di Cauchy, funzione indice, teoremi di Cauchy, serie di potenze e di Laurent, singolarità isolate, teorema dei residui, continuazione analitica, funzione Gamma.
Analisi funzionale: spazi di Hilbert con esempi, polinomi ortogonali, basi ortonormali (Hermite, Legendre), elementi di teoria degli operatori lineari limitati (operatore aggiunto, unitario, proiettore, funzioni di operatori), aggiunto di operatore non limitato con esempi, serie di Fourier (convergenza puntuale e in norma), spazi S delle funzioni a decrescenza rapida e S' delle distribuzioni temperate, trasformata integrale di Fourier negli spazi S, S', L1 e L2, inversione e convoluzione. Teorema di Riemann-Lebesgue.
Prerequisiti
Algebra lineare (spazi vettoriali reali e complessi; matrici Hermitiane, unitarie, ortogonali; autovettori e autovalori; teorema di Cayley-Hamilton). Integrale di Lebesgue. Successioni e serie reali, successioni di funzioni, convergenza puntuale e uniforme. Spazi metrici e normati. Equazioni differenziali ordinarie.
Metodi didattici
Lezioni ed esercitazioni frontali. E' normalmente disponibile un tutoraggio.
Materiale di riferimento
Il manuale "Mathematical Methods for Physics" (L. G Molinari) (anche stampato da CUSL) e` disponibile in ARIEL insieme a una collezione di esercizi e temi di esame, alcuni con soluzioni a link a manuali della biblioteca digitale UniMi.
Lezioni registrate, esercizi e appunti sono nel sito ARIEL del corso dell'a.a. 2020-2021.
Testi utili: Bak and Newman, Complex Analysis, Springer (disponibile nella biblioteca online di Ateneo).
Kolmogorov and Fomine, Elements of the theory of functions and functional analysis, reprint Dover.
Modalità di verifica dell’apprendimento e criteri di valutazione
Esame scritto di 3H in date di appello consistente in 3/4 esercizi. Un esercizio e` valutato corretto se e` corredato da adeguate spiegazioni. Durante la prova e` permessa la consultazione dei manuali messi a disposizione. I risultati dello scritto sono resi noti con elenco contenente il solo numero di matricola. Lo studente che si presenta a una prova successiva ad una gia` sostenuta e non registrata, automaticamente rifiuta il voto della precedente.
Se il voto e` non inferiore a 25/30, lo studente ha facoltà di integrare l'esame con un colloquio con argomento a scelta e domande per accertare la conoscenza degli aspetti fondamentali del corso.
FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI - CFU: 7
Esercitazioni: 24 ore
Lezioni: 40 ore
Turni:
Turno 1
Docente: Fratesi Guido
Turno 2
Docente: Guerra Roberto

CORSO B - EDIZIONE EROGATA IN LINGUA INGLESE

Responsabile
Periodo
Secondo semestre

Programma
Analisi Complessa: piano complesso, funzioni di variabile complessa, equazioni di Cauchy-Riemann, mappe conformi,
problemi di elettrostatica 2D, funzioni olomorfe, teoremi di Cauchy, integrazione complessa, continuazione analitica,
serie di potenze e di Laurent, singolarità isolate, teorema dei residui.
Analisi funzionale: spazi di Hilbert, spazi L1 e L2, serie di Fourier (convergenza puntuale e in norma), polinomi ortogonali, trasformata di Fourier, distribuzioni temperate, operatori lineari limitati (operatore aggiunto, unitario, proiettore, funzioni di operatori).
Prerequisiti
Algebra lineare: spazi vettoriali reali e complessi; matrici Hermitiane, unitarie, ortogonali; autovettori e autovalori.
Successioni e serie reali, successioni di funzioni, convergenza puntuale e uniforme.
Spazi metrici e normati.
Equazioni differenziali ordinarie.
Metodi didattici
Lezioni ed esercitazioni alla lavagna. E' normalmente disponibile un tutoraggio.
Materiale di riferimento
- L. Molinari, "Mathematical Methods for Physics" e` disponibile in ARIEL (anche stampato da CUSL)
- C. W. Wong "Introduction to Mathematical Physics", Oxford University Press
- J. Bak, D. J. Newman, "Complex Analysis", Springer
- K. F. Riley, M. P. Hobson, S. J. Bence, "Mathematical Methods for Physics and Engineering: A Comprehensive Guide", Cambridge University Press
- M. Petrini, G. Pradisi, A. Zaffaroni, "A Guide to Mathematical Methods for Physicists", World Scientific
Modalità di verifica dell’apprendimento e criteri di valutazione
Esame scritto di 3H in date di appello consistente in 3/4 esercizi. Un esercizio e` valutato corretto se e` corredato da adeguate spiegazioni. Durante la prova e` permessa la consultazione dei manuali messi a disposizione. I risultati dello scritto sono resi noti con elenco contenente il solo numero di matricola. Lo studente che si presenta a una prova successiva ad una gia` sostenuta e non registrata, automaticamente rifiuta il voto della precedente.
Se il voto e` non inferiore a 25/30, lo studente ha facoltà di integrare l'esame con un colloquio (15-20 minuti) con argomento a scelta e domande per accertare la conoscenza degli aspetti fondamentali del corso. L'esame dovrebbe durare da 45 minuti a 1 ora.
FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI - CFU: 7
Esercitazioni: 24 ore
Lezioni: 40 ore