Molecular and cellular microbiology

A.A. 2022/2023
Crediti massimi
Ore totali
BIO/18 BIO/19
Obiettivi formativi
The history of microbiology is extremely linked to the development of biotechnological techniques from environmental, medical, nutritional and industrial points of view. The main aim of the course is to illustrate how to translate some molecular and cellular aspects of bacteria into biotechnological applications. The topics of the course span the profiling of complex microbial communities, the development of whole cell biosensors, natural and artificial gene regulation at post-transcriptional level, phage therapy and anti-horizontal gene transfer mechanisms. The course is ideally linked to those dealing with Biotechnological products and processes.
Risultati apprendimento attesi
After following this course, the students will develop a better capability to face the route of exploitation of bacterial functions in a biotechnological perspective. In particular, they will learn how: i) to screen complex microbial ecosystems to discover novel biotechnological products such as enzyme activities of industrial interest, ii) to improve the performance of whole cell biosensors, iii) to exploit post-transcriptional regulations for metabolic engineering applications, iv) to use artificial gene silencing and phage therapy to struggle against bacterial pathogens, v) to derive tools for genome engineering from bacterial anti-horizontal gene transfer mechanisms.
Programma e organizzazione didattica

Edizione unica

Primo semestre

The course is organized in a single module and focuses on different biotechnological aspects of molecular and cellular microbiology. Modern methods of genomics and functional genomics will be described (e.g. DNA and RNA sequencing, metagenomics, transcriptomics, metatranscriptomics), with application to the profiling of uncultivated microbial communities present in complex ecosystems. During the first four lessons of the course, Dr. Elio Rossi will present an overview of the meta-omics approaches to the analysis of microbial communities. Gene regulation at the post-transcriptional level mediated by small RNAs, which represent potentially useful tools for metabolic engineering applications, will be extensively discussed. Artificial gene silencing using antisense oligomers for the development of unconventional antibiotics and phage therapy to combat bacterial pathogens will be discussed. The development of whole cell biosensors for the detection of environmental pollutants and anti-horizontal gene transfer mechanisms with their use for genome engineering will also be described.
Good knowledge of molecular biology, genetics, and microbiology.
Metodi didattici
Teaching mode: classroom lectures supported by projected material. Attendance is highly recommended.
Materiale di riferimento
Bibliographic references including relevant original articles will be listed during the course in the projected slides. Copies of the slides projected in the classroom as well as other materials will be made available through the course website on the ARIEL platform of the University of Milano ( By no means, this material replaces the lectures or a textbook. The material is made available only to registered students of the Degree Course in Molecular Biotechnology and Bioinformatics and should not be distributed to others.
Modalità di verifica dell’apprendimento e criteri di valutazione
The evaluation of the student's performance is based on a written examination with 2-3 open-answer questions on topics covered in the course. A written examination allows students to show their ability to describe in detail and critically comment on the concepts learned during the course. No exercises are present in the examination test. Examples of the examination test will be discussed during classes and made available to students.
Lectures: 48 ore
dal lunedì al venerdì ore 9-18, su appuntamento
on-line attraverso la piattaforma Teams
Contattare per un appuntamento