Organizzazioni e società digitali (Computer and Society)

A.A. 2022/2023
6
Crediti massimi
40
Ore totali
SSD
INF/01
Lingua
Italiano
Obiettivi formativi
L'insegnamento rappresenta il complemento e la prosecuzione di Tecnologie Digitali per le Organizzazioni e si colloca anch'esso nel più ampio contesto dell'Analisi dei Dati per le Scienze Sociali.

Ha tre obiettivi generali:
1) Familiarizzare gli studenti con il passaggio tra e l'uso contemporaneo di tecnologie differenti per l'analisi e la visualizzazione di dati (ambienti R e Python);
2) Approfondire e ampliare l'uso di open data: dati forniti da enti pubblici e associazioni sia italiane che internazionali, dati da istituti di statistica sia italiani (ISTAT) che internazionali (Eurostat, etc.), altri dati nel pubblico dominio richiedenti analisi e operazioni di trasformazione di media e medio-alta complessità;
3) Approfondire la parte di visualizzazione di dati con una galleria di tipi di grafici ampliata e lo studio dei principi teorici e di esempi professionali.

Obiettivi più di dettaglio invece sono:
1) Analisi dei dati con tecnologie Python: liste, vettori, dataframe, uso di multiindici, pivoting;
2) Uso di Jupyter Notebook/Lab per l'utilizzo di documenti contenenti testo, codice eseguibile e risultati (dati o grafici);
3) Uso di Github come repository personale e sistema di versionamento;
4) Visualizzazione di dati e mappe dinamiche per dati georeferenziati: libreria Seaborn e choropleth maps annotate(librerie folium e geopandas)
Risultati apprendimento attesi
Lo studente dovrà dimostrare di avere acquisito una buona conoscenza dei metodi di analisi e una buona familiarità con gli strumenti open source per l'analisi e la visualizzazione dei dati. I risultati di apprendimento dovranno mostrare come la preparazione non si sia limitata a un uso sufficiente delle tecnologie, ma abbia compreso le difficoltà di analisi, il modo di procedere adeguato, e lo studente sia in grado di produrre valutazioni ragionate riguardante l'analisi di open data e la definizione della parte grafica per la visualizzazione dei risultati.
Corso singolo

Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.

Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Primo trimestre

Programma
1. Introduzione alla Data Science con Python
2. Uso di Jupyter Notebook e linguaggio Markdown per documenti interattivi
3. Strutture dati, data frame, multi-indici
4. Data Transformation: uso delle principali librerie di funzioni e aspetti avanzati
5. Ricerca e uso di Open Data nazionali e internazionali: dati socioeconomici, ambientali, mobilità, commercio e industria, energia, eventi culturali, etc.
6. Elementi avanzati di Data Visualization: organizzazione degli elementi grafici, gallery estesa, choropleth map interattive

Il corso prevede lo svolgimento di numerosi esercizi di crescente difficoltà con Open Data finalizzati ad acquisire familiarità con l'analisi di casi di studio reali. Per la preparazione, è indispensabile lo svolgimento in autonomia di numerosi esercizi.
Prerequisiti
Lettura e comprensione testi tecnici in inglese: conoscenza di base.
Familiarità nell'uso di un personal computer e della rete internet.
Si consiglia di aver seguito il corso di Tecnologie Digitali per le Organizzazioni
Metodi didattici
Metodi didattici
Le lezioni sono di tipo frontale. È consigliato avere un proprio laptop per seguire gli esempi e le esercitazioni discusse in aula.
Materiale di riferimento
Tutto il materiale (libri, siti web, software) è disponibile online (open access, open source) e gratuitamente. I riferimenti vengono forniti durante la prima lezione.
Il materiale didattico è quasi interamente in inglese.
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame è esclusivamente scritto con esercitazioni che richiedono l'uso del pc e dei software utilizzati durante il corso.
Non sono previste prove intermedie.
La valutazione si baserà sul grado di comprensione della logica computazionale, della familiarità raggiunta nell'analisi dei dati e nell'uso delle tecnologie impiegate durante il corso.
Un'attività di progetto supplementare, anche a gruppi, è possibile svolgerla.
INF/01 - INFORMATICA - CFU: 6
Lezioni: 40 ore
Docente: Cremonini Marco
Docente/i
Ricevimento:
da concordare
online