Elementi di calcolo
A.A. 2023/2024
Obiettivi formativi
L'insegnamento si propone di fornire agli studenti gli strumenti matematici teorici e pratici per un loro efficace utilizzo negli altri insegnamenti di base e caratterizzanti il CdS.
Risultati apprendimento attesi
Al termine dell'insegnamento gli studenti sapranno applicare i principali concetti del calcolo infinitesimale alla risoluzione di esercizi relativi agli argomenti trattati a lezione.
Periodo: Primo semestre
Modalità di valutazione: Esame
Giudizio di valutazione: voto verbalizzato in trentesimi
Corso singolo
Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.
Programma e organizzazione didattica
Edizione unica
Responsabile
Periodo
Primo semestre
Programma
1. Insiemi numerici: gli insiemi N, Z, Q, R. Ordinamento della retta reale e i simboli di ±∞. Valore assoluto, radici ennesime, logaritmi ed esponenziali: definizioni e proprietà. Percentuali, medie e proporzioni e loro utilizzo nella risoluzione di problemi reali (0.5 CFU).
2. Equazioni e disequazioni: di I e II grado e ad esse riconducibili, fratte, irrazionali, esponenziali e logaritmiche, trigonometriche, irrazionali, con valori assoluti; sistemi di disequazioni (0.5 CFU).
3. Funzioni reali di variabile reale: Il concetto di funzione: Dominio, codominio, grafico, funzioni iniettive e suriettive, funzioni monotone e invertibili, composizione di funzioni, simmetrie (1 CFU)
4. Il piano cartesiano: coordinate, equazioni della retta, ortogonalità, parallelismo, distanza tra punti, distanza punto retta, punto medio e asse di un segmento. Funzioni lineari e loro applicazioni a problemi reali. Sistemi di disequazioni in due variabili per la descrizione di opportune regioni del piano. Goniometria e trigonometria: definizioni e principali proprietà, teorema dei seni e teorema di Carnot, applicazioni a problemi reali (1CFU).
5. Funzioni elementari e loro grafici: funzioni lineari, potenze e radici, esponenziali, logaritmi, funzioni goniometriche, modulo e segno: definizioni, proprietà, grafici. Operazioni elementari sui grafici (traslazioni, ribaltamenti, simmetrie, valori assoluti) (1CFU)
6. Limiti: definizione, forme di indecisione e loro risoluzione, limiti notevoli, gerarchia degli infiniti e degli infinitesimi, stime asintotiche per la risoluzione di forme di indecisione. Asintoti orizzontali, verticali e obliqui. Funzioni continue (1 CFU)
7. Derivate: derivate delle funzioni elementari, regole di derivazione, derivate delle funzioni composte. Relazioni tra continuità e derivabilità. Significato geometrico della derivata prima e sue applicazioni; rette tangenti; monotonia e ricerca dei punti di massimo e di minimo; tassi di variazione dipendenti; applicazione a problemi concreti di ottimizzazione. Derivata seconda, concavità e punti di flesso. Studio qualitativo del grafico di una funzione (1.5 CFU)
8. Integrali: Integrali indefiniti: nozione di funzione primitiva, primitive di funzioni elementari, ricerca di primitive. Metodi di integrazione (integrali immediati, riconducibili a integrali immediati, per sostituzione, per parti, integrazione di funzioni razionali). Integrali definiti: il Teorema Fondamentale del Calcolo Integrale e le sue applicazioni. Calcolo di aree di regioni piane (1.5 CFU)
2. Equazioni e disequazioni: di I e II grado e ad esse riconducibili, fratte, irrazionali, esponenziali e logaritmiche, trigonometriche, irrazionali, con valori assoluti; sistemi di disequazioni (0.5 CFU).
3. Funzioni reali di variabile reale: Il concetto di funzione: Dominio, codominio, grafico, funzioni iniettive e suriettive, funzioni monotone e invertibili, composizione di funzioni, simmetrie (1 CFU)
4. Il piano cartesiano: coordinate, equazioni della retta, ortogonalità, parallelismo, distanza tra punti, distanza punto retta, punto medio e asse di un segmento. Funzioni lineari e loro applicazioni a problemi reali. Sistemi di disequazioni in due variabili per la descrizione di opportune regioni del piano. Goniometria e trigonometria: definizioni e principali proprietà, teorema dei seni e teorema di Carnot, applicazioni a problemi reali (1CFU).
5. Funzioni elementari e loro grafici: funzioni lineari, potenze e radici, esponenziali, logaritmi, funzioni goniometriche, modulo e segno: definizioni, proprietà, grafici. Operazioni elementari sui grafici (traslazioni, ribaltamenti, simmetrie, valori assoluti) (1CFU)
6. Limiti: definizione, forme di indecisione e loro risoluzione, limiti notevoli, gerarchia degli infiniti e degli infinitesimi, stime asintotiche per la risoluzione di forme di indecisione. Asintoti orizzontali, verticali e obliqui. Funzioni continue (1 CFU)
7. Derivate: derivate delle funzioni elementari, regole di derivazione, derivate delle funzioni composte. Relazioni tra continuità e derivabilità. Significato geometrico della derivata prima e sue applicazioni; rette tangenti; monotonia e ricerca dei punti di massimo e di minimo; tassi di variazione dipendenti; applicazione a problemi concreti di ottimizzazione. Derivata seconda, concavità e punti di flesso. Studio qualitativo del grafico di una funzione (1.5 CFU)
8. Integrali: Integrali indefiniti: nozione di funzione primitiva, primitive di funzioni elementari, ricerca di primitive. Metodi di integrazione (integrali immediati, riconducibili a integrali immediati, per sostituzione, per parti, integrazione di funzioni razionali). Integrali definiti: il Teorema Fondamentale del Calcolo Integrale e le sue applicazioni. Calcolo di aree di regioni piane (1.5 CFU)
Prerequisiti
Essendo un insegnamento del primo semestre del primo anno non vi sono prerequisiti specifici differenti da quelli richiesti per l'accesso al corso di laurea.
Metodi didattici
Lezioni frontali, esercitazioni, applicazioni di esempi a casi concreti, utilizzo di piattaforma di e-learning associata al libro di testo, utilizzo di software didattici, lavoro di gruppo, utilizzo di giochi didattici come leva motivazionale per l'apprendimento della materia e come strumento di verifica e autovalutazione su tematiche curricolari. Il corso si avvale della piattaforma di e-learning MyAriel , sulla quale vengono caricati con cadenza settimanale fogli di esercizi e altro materiale didattico relativo agli argomenti trattati a lezione. La frequenza al corso, se pur non obbligatoria, è fortemente consigliata.
Materiale di riferimento
Silvia Annaratone, Matematica sul campo. Metodi ed esempi per le scienze della vita 2/Ed. con MyLab
(ISBN 9788891910615, Euro 29,00)
(ISBN 9788891910615, Euro 29,00)
Modalità di verifica dell’apprendimento e criteri di valutazione
Per sostenere l'esame gli studenti devono essere regolarmente iscritti tramite SIFA e devono presentarsi davanti all'aula 15 minuti prima dell'inizio della prova scritta, muniti di documento di identità con foto e di fogli protocollo.
L'esame è costituito da una prova scritta e da una prova orale. Durante la prova scritta non è consentito l'uso della calcolatrice.
La prova scritta è costituita da due parti:
· la parte A della durata di 30 minuti, consiste in 10 domande aperte riguardanti i prerequisiti al corso. Le domande, estremamente semplici, hanno l'obiettivo di valutare se lo studente possiede le competenze minime per affrontare lo studio della matematica universitaria ed è in grado di operare correttamente con il simbolismo matematico. Tale Parte A sarà considerata superata se si risponderà correttamente ad almeno 8 domande su 10. Il superamento della Parte A è condizione necessaria (ma non sufficiente!) per il superamento della prova scritta} vera e propria.
· La Parte B, della durata di 90 minuti, consiste in sei esercizi a risposta aperta relativi agli argomenti di matematica svolti durante il corso, e si propone di verificare la capacità dello studente di utilizzare metodi e strumenti matematici in situazioni diverse e di individuare strategie appropriate per la soluzione di problemi.
La prova scritta si considera superata se tutte e due le parti sono superate (la parte A con almeno 8 su 10, la parte B con almeno 18 su 30). Il punteggio della parte A (se superata) NON contribuisce al voto della prova scritta.
La durata complessiva della prova scritta è di 2 ore. Durante la prova scritta è vietato consultare libri, appunti, utilizzare calcolatrici di qualsiasi tipo, computer e telefoni cellulari. È inoltre vietato comunicare con i compagni, pena l'immediata espulsione dall'aula. Durante tutta la prova scritta è inoltre vietato allontanarsi dall'aula: in particolare durante la prima ora della parte B non sarà possibile lasciare l'aula per nessuna ragione. Allo scadere della prima ora gli studenti che lo desiderano possono consegnare o ritirarsi.
La prova orale potrà essere sostenuta solo se la prova scritta è stata superata con una votazione maggiore o uguale a 18/30, e solamente nella stessa sessione della prova scritta. La prova orale si propone di valutare la capacità dello studente di utilizzare un linguaggio e una simbologia appropriata, di focalizzare il percorso di soluzione di un problema attraverso modelli algebrici e grafici e di analizzare e interpretare i risultati ottenuti. Gli studenti che, superata la prova scritta, non si presentassero a sostenere la prova orale, saranno respinti.
Il voto finale dell'esame sarà la media aritmetica tra il voto dello scritto e quello dell'orale e sarà espresso in trentesimi.
Esempi di prove scritte degli anni passati sono disponibili sul sito Moodle del corso.
L'esame è costituito da una prova scritta e da una prova orale. Durante la prova scritta non è consentito l'uso della calcolatrice.
La prova scritta è costituita da due parti:
· la parte A della durata di 30 minuti, consiste in 10 domande aperte riguardanti i prerequisiti al corso. Le domande, estremamente semplici, hanno l'obiettivo di valutare se lo studente possiede le competenze minime per affrontare lo studio della matematica universitaria ed è in grado di operare correttamente con il simbolismo matematico. Tale Parte A sarà considerata superata se si risponderà correttamente ad almeno 8 domande su 10. Il superamento della Parte A è condizione necessaria (ma non sufficiente!) per il superamento della prova scritta} vera e propria.
· La Parte B, della durata di 90 minuti, consiste in sei esercizi a risposta aperta relativi agli argomenti di matematica svolti durante il corso, e si propone di verificare la capacità dello studente di utilizzare metodi e strumenti matematici in situazioni diverse e di individuare strategie appropriate per la soluzione di problemi.
La prova scritta si considera superata se tutte e due le parti sono superate (la parte A con almeno 8 su 10, la parte B con almeno 18 su 30). Il punteggio della parte A (se superata) NON contribuisce al voto della prova scritta.
La durata complessiva della prova scritta è di 2 ore. Durante la prova scritta è vietato consultare libri, appunti, utilizzare calcolatrici di qualsiasi tipo, computer e telefoni cellulari. È inoltre vietato comunicare con i compagni, pena l'immediata espulsione dall'aula. Durante tutta la prova scritta è inoltre vietato allontanarsi dall'aula: in particolare durante la prima ora della parte B non sarà possibile lasciare l'aula per nessuna ragione. Allo scadere della prima ora gli studenti che lo desiderano possono consegnare o ritirarsi.
La prova orale potrà essere sostenuta solo se la prova scritta è stata superata con una votazione maggiore o uguale a 18/30, e solamente nella stessa sessione della prova scritta. La prova orale si propone di valutare la capacità dello studente di utilizzare un linguaggio e una simbologia appropriata, di focalizzare il percorso di soluzione di un problema attraverso modelli algebrici e grafici e di analizzare e interpretare i risultati ottenuti. Gli studenti che, superata la prova scritta, non si presentassero a sostenere la prova orale, saranno respinti.
Il voto finale dell'esame sarà la media aritmetica tra il voto dello scritto e quello dell'orale e sarà espresso in trentesimi.
Esempi di prove scritte degli anni passati sono disponibili sul sito Moodle del corso.
Siti didattici
Docente/i