Data science per le organizzazioni

A.A. 2025/2026
6
Crediti massimi
40
Ore totali
SSD
INF/01
Lingua
Italiano
Obiettivi formativi
Non definiti
Risultati apprendimento attesi
Non definiti
Corso singolo

Questo insegnamento non può essere seguito come corso singolo. Puoi trovare gli insegnamenti disponibili consultando il catalogo corsi singoli.

Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Primo trimestre

Programma
1. Introduzione alla data science per le Scienze Sociali
2. Open Data, Open Access, Open Source
3. Il linguaggio R e il programma RStudio
4. Operazioni di Data Wrangling
5. Lettura di dati e operazioni di trasformazione fondamentali
6. Operazioni su date, stringhe alfanumeriche e valori mancanti
7. Gruppi e operazioni di aggregazione
8. Funzioni e operazioni multicolonna
9. Join di data frame
10. Operazioni su liste

Tutti gli argomenti sono corredati da esercitazioni pratiche, svolte o discusse in aula e da svolgere autonomamente su casi reali ricavati da Open Data pubblicamente disponibili. Svolgere numerosi esercizi è parte indispensabile della preparazione richiesta.
Prerequisiti
Conoscenza di base dell'inglese necessaria per l'uso degli strumenti, dei dati e di parte della documentazione.
Uso di base di un personal computer e rete internet (es. creazione e gestione di file, cartelle, regole per i nomi dei file, installazione guidata di un programma, uso di browser e motori di ricerca, etc.) .
Metodi didattici
Metodi didattici
Le lezioni sono di tipo frontale e prevedono numerosi esempi pratici. Per questo può essere utile avere un proprio laptop per seguire gli esempi e le esercitazioni discusse in aula.
Materiale di riferimento
LIBRO DI TESTO
FONDAMENTI DI DATA SCIENCE - Python, R e OpenData
Marco Cremonini, Egea Editore, Giugno 2023. ISBN/EAN: 9788823823501
https://www.egeaeditore.it/ita/prodotti/ict-e-sistemi-informativi/fondamenti-di-data-science.aspx

Di questo testo useremo le sezioni dedicate al linguaggio R.
Questo libro di testo verrà usato anche per il corso di Data Visualization per il Management (ex-Organizzazioni e Società Digitali) del II anno.
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame è esclusivamente scritto con esercitazioni che richiedono l'uso del pc e dei software utilizzati durante il corso.
Non sono previste prove intermedie.
La valutazione si baserà sul grado di comprensione della logica computazionale, della familiarità raggiunta nell'analisi dei dati e nell'uso delle tecnologie impiegate durante il corso.
INF/01 - INFORMATICA - CFU: 6
Lezioni: 40 ore
Docente: Cremonini Marco
Docente/i
Ricevimento:
da concordare
online