Electroweak Interactions

A.Y. 2018/2019
6
Max ECTS
42
Overall hours
SSD
FIS/04
Language
Italian
Learning objectives
Alla fine del corso lo studente
1. Avrà appreso le equazioni di Klein-Gordon e di Dirac come possibili generalizzazioni relativistiche dell'equazione di Schrödinger;
2. Si sarà resso conto delle difficoltà di interpretazione delle equazioni relativistiche e avrà compreso la necessità di una teoria quantistica di campo;
3. Avrà imparato a fare calcoli di sezioni d'urto e di larghezze di decadimento per processi a livello d'albero;
4. Avrà compreso le connessioni fra la forma della corrente deboli e la conseguente fenomenologia come, ad esempio, le distribuzioni angolari,
le distribuzioni di energia e gli effetti di polarizzazione;
5. studiato i principali esperimenti che hanno portato alla comprensione delle interazioni deboli di corrente e alla violazione della parità
Expected learning outcomes
Undefined
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
First semester
Course syllabus
Course content
1. Relativistic Quantum Mechanics
a. Klein-Gordon equation;
i Free-particle solutions; Probability Current;
ii Electromagnetic interaction; Charge conjugation;
iii Negative energy solutions and Klein paradox
b. Dirac equation
i Free-particle solutions; Probability current;
ii Angular momentum; Spin; Helicity;
iii Lorentz Transformation of spinors; spinor inversion;
iv Bilinear covariants;
v Eelctromagnetic interaction; Charge conjugation;
2. Lagrangian formalism, symmetries and conservation laws
a. Hamilton princilple and Euler-Lagrange equations;
b. Symmetries and conservation laws: currents and charges
3. Beta decay
a. Fermi theory of decay: vector interaction;
b. Experimental evidence of Ferme and Gamov-Teller transitions; introduction of axial pseudoscalar, vector and tensor interactions;
c. Calculation of matrix elements for the various form of the interaction; phenomenological consequences: energy distributions, e- angular correlations. Experiments for the measurement of the angular correlations;
d. Parity violation in decay; consequences of parity violation on the structure of the interaction hamiltonian; electron polarization in decay. Measurement of the electron polarization in decay: Bargman-Telegdi-Michel equation. V-A structure of the charged weak current.
4. Weak decays of hadrons and leptons
a. Universality of the Fermi Interaction
b. Selection rules: | S| = 1 e S = Q; interpretation of the selection rules in the quark model.
FIS/04 - NUCLEAR AND SUBNUCLEAR PHYSICS - University credits: 6
Lessons: 42 hours
Professor: Ragusa Francesco
Professor(s)
Reception:
please contact [email protected] to arrange an appointment
Via Celoria 16 - Edificio LITA, IV floor/ Zoom videoconference platform