Particle Detectors
A.Y. 2018/2019
Learning objectives
Il corso ha l'obbiettivo di introdurre i principali rivelatori utilizzati per la rivelazione di particelle cariche e neutre in esperimenti di fisica delle particelle e in fisica medica e sanitaria. Vengono introdotte le tecniche per la misura dell'energia, del tempo e della posizione. Sono trattati i principali tipi di rivelatori a gas, a stato solido e a scintillazione. Particolare attenzione è posta al problema di come le grandezze fisiche da misurare (energia, tempo, posizione) sono contenute nel segnale fornito dal rivelatore e come un'adeguata elaborazione dello stesso consente la misura ottimale delle grandezze di interesse.
Expected learning outcomes
Undefined
Lesson period: Second semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Responsible
Lesson period
Second semester
Course syllabus
1. General properties of particle detectors
a. Detectors for the measurement of energy, time, position
b. Resolution, efficiency, dead time, random coincidences
2. Detector types
a. Ionization detectors using gases with and without amplification
b. Ionization detectors using liquids
c. Solid state ionization detectors
d. Scintillation detectors
3. Signal formation in ionization detectors
a. Induced signal and Ramo theorem
b. Ionization transport in the detector medium. Drift velocity
c. Calculation of the guide electric fields and Ramo field in simple case:
i. Parallel plates detector
ii. Cylindrical detector
iii. Strips detector
iv. Wires detector
d. Electronics signal processing
i. Noise
ii. Preamplifiers
iii. Measurement of amplitude and measurement of time
4. Systems
a. Systems for the tracking of charged particle trajectories
b. Electromagnetic calorimeters
c. Hadronic calorimeters
d. Neutrino detectors
e. Detectors for ultra high energy cosmic ray measurement
f. Detectors for rare events measurement
g. Trigger systems; implementation examples in some modern experiment
h. Detectors for medical physics
a. Detectors for the measurement of energy, time, position
b. Resolution, efficiency, dead time, random coincidences
2. Detector types
a. Ionization detectors using gases with and without amplification
b. Ionization detectors using liquids
c. Solid state ionization detectors
d. Scintillation detectors
3. Signal formation in ionization detectors
a. Induced signal and Ramo theorem
b. Ionization transport in the detector medium. Drift velocity
c. Calculation of the guide electric fields and Ramo field in simple case:
i. Parallel plates detector
ii. Cylindrical detector
iii. Strips detector
iv. Wires detector
d. Electronics signal processing
i. Noise
ii. Preamplifiers
iii. Measurement of amplitude and measurement of time
4. Systems
a. Systems for the tracking of charged particle trajectories
b. Electromagnetic calorimeters
c. Hadronic calorimeters
d. Neutrino detectors
e. Detectors for ultra high energy cosmic ray measurement
f. Detectors for rare events measurement
g. Trigger systems; implementation examples in some modern experiment
h. Detectors for medical physics
FIS/04 - NUCLEAR AND SUBNUCLEAR PHYSICS - University credits: 6
Lessons: 42 hours
Professors:
Andreazza Attilio, Carminati Leonardo Carlo
Professor(s)
Reception:
On appointment