Physics of the Earth and Laboratory

A.Y. 2018/2019
9
Max ECTS
84
Overall hours
SSD
GEO/10
Language
Italian
Learning objectives
Fisica Terrestre
L'obiettivo prioritario del corso è quello di fornire allo studente le conoscenze di base sui processi dinamici che avvengono nella parte interna della Terra (mantello terrestre) e nella parte più esterna (litosfera).
Un altro obiettivo è quello di mettere a punto le metodologie matematiche necessarie allo studente per acquisire la capacità di descrivere in modo quantitativo i processi di deformazione, di trasporto del calore e di massa sulla superficie e all'interno della Terra. Tali metodologie permettono allo studente di arrivare ad una comprensione quantitativa dei processi geologici e geofisici.
Terzo obiettivo è quello di fare acquisire allo studente la capacità, a un livello di base, di simulare i processi geologici e geofisici fondamentali mediante modelli matematici.

Laboratorio di Fisica Terrestre
Approfondire le tematiche affrontate durante il corso di Fisica Terrestre attraverso la risoluzione di alcuni esercizi riconducibili a problemi geologici semplici.
Expected learning outcomes
Undefined
Course syllabus and organization

Single session

Responsible
Lesson period
Second semester
Course syllabus
PHYSICS OF THE EARTH AND LABORATORY
Continuum mechanics.
Strain and stress tensor. Cauchy formula. Maximum shear stress. Mohr's circle. Eigen values and eigen directions of the stress tensor. Wave equation, body and surface waves.
Linear elasticity for homogeneous and isotropic media, Hooke's law. Viscous behavious of rocks, Maxwell and Kelvin-Voigt viscoelastic solid. Crystal defects underlying the viscous behaviour of rocks, voids and dislocations. Navier-Stokes equation.
Heat transport.
Steady-state and time-dependent heat conduction. Geotherm for continental and oceanic lithospheres. Heat flow. Thermal boundary layer. Negative buoyancy forces at subduction zones. Cooling and subsidence of the oceanic lithosphere and of a sedimentary basin.
Gravity field.
Gravity and geopotential, zero and first order term, the latter due to the Earth's flattening. J2 and the ratio between centrifugal and gravitational potentials.
Geophysical processes responsible for the present-day J2 reduction. First-order expression of the geoid, as a function of latitude. Gravity and geoid anomalies, due to anomalous mass distributions.
Isostatic compensation. Bouguer and free-air gravity anomalies. Geoid anomalies, for Airy and Pratt topography isostatic compensation.
Magnetic field
Basic concepts (magneto-hydrodynamics) on the Earth's magnetic field. Equivalent magnetic dipole. Self-exciting dynamo. Magnetic field as a function of the latitude.

Numerical Solution of Partial Differential Equations. Outlines of finiteelements
methods. Introduction to discrete systems. Discretisation of a
continuum into a discrete set of elements. Application of MatLab for
numerical modelling and visualization. Energy Conservation Equation.
Numerical Solution of the Heat Stationary and time dependent
Conservation Equation: Numerical solution of Steady-state continental
geotherm. Numerical solution of Steady-state oceanic geotherm.
Numerical implementation of thermal boundary conditions: constant
temperature, constant heat flow, combined boundary conditions.
Numerical implementation of initial thermal conditions.
GEO/10 - SOLID EARTH GEOPHYSICS - University credits: 9
Practicals: 36 hours
Lessons: 48 hours
Professor: Sabadini Roberto
Professor(s)
Reception:
Every day by e-mail appointment
Microsoft Teams Platform