Quantum Optics
A.Y. 2018/2019
Learning objectives
Comprensione dei concetti e padronanza delle tecniche di calcolo per gli argomenti seguenti:
1) Quantizzazione del campo di radiazione a partire dall'elettrodinamica classica;
2) Caratterizzazione delle principali osservabili e dei piu' rilevanti stati del campo
di radiazione. Stati classici e nonclassici;
3) Teoria quantistica della coerenza e della rivelazione della radiazione.
4) Generazione, manipolazione e caratterizzazione di stati nonclassici, processi
parametrici e generazione di squeezing ed entanglement;
5) Dinamica del campo di radiazione come sistema quantistico aperto;
6) Atomo a due livelli e sua interazione con il campo quantizzato;
7) Hamiltoniana di Jaynes-Cummings ed effetti dinamici
8) Sistemi ottico-quantistici in esperimenti di fondamento ed in applicazioni
alla quantum information.
1) Quantizzazione del campo di radiazione a partire dall'elettrodinamica classica;
2) Caratterizzazione delle principali osservabili e dei piu' rilevanti stati del campo
di radiazione. Stati classici e nonclassici;
3) Teoria quantistica della coerenza e della rivelazione della radiazione.
4) Generazione, manipolazione e caratterizzazione di stati nonclassici, processi
parametrici e generazione di squeezing ed entanglement;
5) Dinamica del campo di radiazione come sistema quantistico aperto;
6) Atomo a due livelli e sua interazione con il campo quantizzato;
7) Hamiltoniana di Jaynes-Cummings ed effetti dinamici
8) Sistemi ottico-quantistici in esperimenti di fondamento ed in applicazioni
alla quantum information.
Expected learning outcomes
Undefined
Lesson period: Second semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Responsible
Lesson period
Second semester
Course syllabus
The lectures cover the following main topics:
1) Quantization of the classical electromagnetic field. Field operators and density matrix.
Fock space, Thermal radiation. The vacuum state of the radiation field and its physical effects. Quantum theory of the radiation detection. Theory of the quantum coherence.
2) Radiation emission and absorption. Microscopic interaction and quantum dynamics of a
two-level atom: Jaynes- Cummings model and dressed states.
3) Coherent states and their properties. Displacement operator and BCH formulae.
Probability distributions and moments generation functions. Generalized Wigner functions.
Gaussian states and their description.
4) Non-classical radiation states. Minimal uncertainty states and squeezed states. Squeezing operator. Number distributions and quadratures.
5) Description of open systems in quantum optics. Dissipation and Master equations models.
Fokker-Planck equation. Decoherence.
6) Quantum mechanics of the beamsplitter. Effective Hamiltonian and field evolution.
Two-photon mixing and single atom fluorescence. Modeling quantum efficiency with a beam
splitter. Squeezing/entanglement duality.
7) Quantum measurements. Photon number resolving detection. Homodyne and heterodyne
detection. Quantum tomography.
8) Technological applications. The atomic clock and the atomic fountain clock. Squeezing and interferometry. Quantum teleportation.
1) Quantization of the classical electromagnetic field. Field operators and density matrix.
Fock space, Thermal radiation. The vacuum state of the radiation field and its physical effects. Quantum theory of the radiation detection. Theory of the quantum coherence.
2) Radiation emission and absorption. Microscopic interaction and quantum dynamics of a
two-level atom: Jaynes- Cummings model and dressed states.
3) Coherent states and their properties. Displacement operator and BCH formulae.
Probability distributions and moments generation functions. Generalized Wigner functions.
Gaussian states and their description.
4) Non-classical radiation states. Minimal uncertainty states and squeezed states. Squeezing operator. Number distributions and quadratures.
5) Description of open systems in quantum optics. Dissipation and Master equations models.
Fokker-Planck equation. Decoherence.
6) Quantum mechanics of the beamsplitter. Effective Hamiltonian and field evolution.
Two-photon mixing and single atom fluorescence. Modeling quantum efficiency with a beam
splitter. Squeezing/entanglement duality.
7) Quantum measurements. Photon number resolving detection. Homodyne and heterodyne
detection. Quantum tomography.
8) Technological applications. The atomic clock and the atomic fountain clock. Squeezing and interferometry. Quantum teleportation.
FIS/03 - PHYSICS OF MATTER - University credits: 6
Lessons: 42 hours
Professors:
Castelli Fabrizio, Olivares Stefano
Professor(s)
Reception:
tuesday 14:30 - 19:00
Department of Physics, via Celoria 16 Milan (fifth floor, room A/5/C3)
Reception:
by e-mail appointment
Room A/5/C8 - 5th floor LITA building, Dipartimento di Fisica (via Celoria, 16 - 20133 Milano)