Continuum mathematics

A.Y. 2021/2022
12
Max ECTS
112
Overall hours
SSD
MAT/01 MAT/02 MAT/03 MAT/04 MAT/05 MAT/06 MAT/07 MAT/08 MAT/09
Language
Italian
Learning objectives
The aim of the course is to provide the basic mathematical tools, both from a conceptual and from a calculus point of view, which are essential to successfully attend a university undregraduate program in a scientific area. The course should also provide the required mathematics prerequisites for the other courses of the program.
Expected learning outcomes
At the end of the course, students should prove to have a sufficient knowledge of basic mathematics, that includes the main properties of sets, of the main number sets, in particular of real numbers, of functions between sets, of elementary functions, of combinatorics and of complex numbers. Also, she/he should know the basic results in the theory of differential and integral calculus for functions of one real variable. Finally, at the end of the course students should be able to apply the theoretical results to solve elementary problems and exercises and in
particular they should be able to tackle the following kinds of problems: computation of limits of sequences or functions, analysis of the continuity of a function, computation of derivates, study of the qualitative graph of a function, computation of the Taylor polynomial and expansion, computation of definite and indefinite integrals.
Course syllabus and organization

Single session

Lesson period
First semester
MAT/01 - MATHEMATICAL LOGIC - University credits: 0
MAT/02 - ALGEBRA - University credits: 0
MAT/03 - GEOMETRY - University credits: 0
MAT/04 - MATHEMATICS EDUCATION AND HISTORY OF MATHEMATICS - University credits: 0
MAT/05 - MATHEMATICAL ANALYSIS - University credits: 0
MAT/06 - PROBABILITY AND STATISTICS - University credits: 0
MAT/07 - MATHEMATICAL PHYSICS - University credits: 0
MAT/08 - NUMERICAL ANALYSIS - University credits: 0
MAT/09 - OPERATIONS RESEARCH - University credits: 0
Practicals: 48 hours
Lessons: 64 hours
Professor: Matessi Diego
Professor(s)