Organic Chemistry A

A.Y. 2022/2023
9
Max ECTS
96
Overall hours
SSD
CHIM/06
Language
Italian
Learning objectives
Aims of the course are: to improve the knowledge on the structure of organic molecules and of reaction mechanisms; to provide concepts about reactions of great interest in organic synthesis, that are not discussed in basic organic chemistry courses; to improve experimental lab's techniques and practical skills
Expected learning outcomes
The student will acquire skills complementary to those already attained in the field of stereochemistry, in advanced organic synthesis and specific reactions mechanisms and pericyclic reactions.
From the laboratory training he will gain expertise in the execution and work up of sophisticated organic reactions performed under inert atmosphere and with stereochemical aspects.
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
First semester
Course syllabus
Organic Chemistry A
Stereochemistry. Configuration. Symmetry and chirality. Stereogenic units. Stereogenic centers. Configuration at tetrahedral atoms. Configuration at double bonds. Configuration at cyclic systems. Prochiral centers. Topism. Molecules with multiple stereogenic centers. Chirality and optical activity. Diastereotopic and enantiotopic atoms, groups or faces. Absolute Configuration. Analysis and separation of enantiomeric mixtures. Conformation. Conformational analysis. Conformation in open-chain systems. Conformation in six-membered rings. Conformation in heteroatom containing six-membered rings. Conformation in other rings. Stereoselectivity. Stereoselective and stereospecific syntheses. Enantioselective syntheses. Conformational, torsional and stereoelectronic effects on reactivity. Double stereo-differentiation.
Reaction Mechanisms -Types of mechanism (heterolytic, homolytic, pericyclic). Types of reactions (substitution, addition to double or triple bonds, -elimination, rearrangement). Reaction intermediates (ionic, radical, organometallic). Methods of determining reaction mechanisms (determination of the presence of an intermediate, isotopic labelling, stereochemical evidence, the study of catalysis, isotope effects, kinetic evidence). Stepwise reactions and intermediate formation.
Carbocations (structure and stability; generation and reactivity of carbocations, non- classical carbocations). SN1 Mechanism. Addition to carbon-carbon multiple bonds (alkenes, dienes, allyl/vinyl silanes and allyl/vinyl stannanes). E1 Mechanism.
Free radicals (structure and stability, generation and reactivity of radicals). Radical addition to double bonds. Radical cyclizations. Reactions at unactivated C-H bonds.
One-step mechanism, without intermediate formation. SN2 and E2 mechanism.
Pericyclic reactions. Concerted cycloadditions. The perturbational Theory. The Diels-Alder reaction (Regioselectivity and stereochemistry. Substituent effects. Lewis acid catalysis. Diastereoselective Diels-Alder reactions using chiral auxiliaries. Enantioselective catalysis in Diels-Alder reaction. Intramolecular Diels-Alder reactions. Scope and synthetic applications. 1,3-Dipolar Cycloadditions (Regiochemistry and stereochemistry. Catalysis. Scope and applications). [2+2]-Cycloadditions (Cycloaddition reactions of alkenes and ketenes. Synthesis of Cyclobutanes). Unimolecular rearrangements.[1,j]- Sigmatropic rearrangements. [3,3]-Sigmatropic rearrangements (Cope and modified Cope rearrangements. Claisen and modified Claisen rearrangements). [2,3]-Sigmatropic rearrangements (rearrangement of allylic sulfoxides, amine oxides, allylic sulfonium and ammonium ylides). Wittig and aza-Wittig rearrangements.
Unimolecular thermal eliminations (cheletropic reactions, decomposition of cyclic azo-compounds, -eliminations via cyclic transition states).

Organic Chemistry Laboratory A
Some of the reactions discussed in the course will be performed in the laboratory, focusing on inert atmosphere working and other advanced techniques. Stereochemical aspects of the reactions will also be considered.
Prerequisites for admission
Students must have knowledge of Organic Chemistry I and Organic Chemistry II. Therefore students must know the chemistry of aliphatic and aromatic compounds in order to deep understand the lesson contents.
Teaching methods
Lessons will be given on Microsoft Teams platform and could be attended by students on the basis of the calendar of the first semester. In addition, lessons will be registered and made available to students on ARIEL platform of the course.
For the laboratory module, the introductory lessons will be delivered using Teams or in classroom. The lab work will take place in the Fusco Laboratory in the Chemistry Department during two weeks, indicatively at the end of November. Depending on the number of attendees relative to the allowed occupancy of the laboratory, students will be able to attend 1 or 2 weeks of practice. A video of the lab work have been uploaded on the Ariel platform for those students who will be unable to attend for Covid-related reasons.
Teaching Resources
(1) Slides presented during the lessons available through Ariel site.
(2) F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Part B: Reactions and Synthesis, V Edition, 2007 Springer Science;
(3) F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, V Edition, 2007 Springer Science.
Assessment methods and Criteria
The exam will take place in oral form using Microsoft Teams platform or, if allowed by regulation, in presence in the teacher office.
CHIM/06 - ORGANIC CHEMISTRY - University credits: 9
Laboratories: 48 hours
Lessons: 48 hours
Professor(s)
Reception:
Tuesady and Thursday 14.30 - 15.30
Office - Via Golgi 19 - Dept of Chemistry or Chat in Teams (book by mail)