Quantum Field Theory 2

A.Y. 2024/2025
6
Max ECTS
42
Overall hours
SSD
FIS/02
Language
Italian
Learning objectives
Expand the core ideas of relativistic quantum field theory which have been introduced in Quantum Field Theory 1, specifically in what concerns analiticity, symmetry and invariance.
Expected learning outcomes
At the end of this course the student:
1. Will be able to use unitarity and the optical theorem to understand the analytic properties of amplitudes;
2. Derive the Ward identities for symmetres realized in Wigner-Weyl form;
3. Prove Glodstone's theorem for spontaneously broken symmetries, both at the classical and quantum level;
4. Construct and compute the effective potential;
5. Quantize a gauge theory and derive its Feynman rules with various gauge choices
6. Construct a gauge theory with massive field via the Higgs mechanism;
7. Renormalize quantum electrodymanics perturbatively;
8. Understand the quantum breaking of classical symmetries related to scale invariance (including chiral anomalies);
9. Write donw and solve the Callan-Symanzik equation (renormalization group equation);
10. Compute the operator-product (Wilson) expansion and the anomaloud dimensions of operators entering it.
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
First semester
FIS/02 - THEORETICAL PHYSICS, MATHEMATICAL MODELS AND METHODS - University credits: 6
Lessons: 42 hours
Professor(s)