Human biochemistry

A.Y. 2018/2019
9
Max ECTS
76.5
Overall hours
SSD
BIO/10
Language
English
Learning objectives
This course is designed to provide the fundamental knowledge to understand the concepts of biochemistry processes that control the functioning and homeostasis of cells and body in physiological and pathophysiological conditions.
Expected learning outcomes
By the end of this course students should be familiar with:
The role of ABC transporters in cell physiology, ABC-related inherited diseases and drug resistance
The role of membrane lipids in cell biology
Physiological aspects of biochemistry, with emphasis on mammalian metabolism, specialized cells and tissues, detoxification mechanisms, energetics, and physiological interrelationships
Biochemical causes of the diseases discussed during the course, as well as current and future opportunities for biochemical-based treatments
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
Second trimester
Course syllabus
ABC TRANSPORTERS
Structure
Mechanism of action
Role in cell physiology
Role in drug resistance

MEMBRANE LIPIDS: ARCHITECTURE, DYNAMICS AND BIOLOGICAL FUNCTIONS
In/out asymmetry and lateral asymmetry in pathophysiological processes
Aminophospholipids in membrane fusion, cytokinesis clotting, phagocytosis and apoptosis Phosphosinositides: compartimentalization, vesicular traffic and cell signaling
(Glyco)sphingolipids: Lipid Microdomains, signaling platforms, cell-cell communication

Lipids and cell signaling
Lipid mediators in the control of cell proliferation, death and migration: Ceramide , Sphingosine-1-phosphate and Diacylglicerol
"Omics" in lipid signaling

HUMAN BIOCHEMISTRY
Tissue-specific metabolic processes:
Lipoproteins, structure, metabolism, and their role in the regulation of lipid homeostasis. Structural and metabolic alterations of lipoproteins and atherosclerosis.
Liver,
adipose tissue
muscle
metabolic adaptation in physiological conditions (metabolic diseases, aging....)

Biochemistry of the nervous system:
Metabolism and functions: neurons-glia interactions.
Specialized functions of cells of the nervous system
Cell models for the study of biochemical processes in cells of the nervous system


Biochemistry of cancer:
Metabolic processes in the tumor cells
Aberrant glycosylation in the tumor
Cell models


Laboratory sections:
Characterization of lipid composition in cell extracts
BIO/10 - BIOCHEMISTRY - University credits: 9
Practicals: 24 hours
Lessons: 52.5 hours
Professor(s)
Reception:
by appointment
LITA Segrate/MS Teams