Mathematical Analysis 3
A.Y. 2018/2019
Learning objectives
Il corso intende completare le conoscenze degli studenti nell'ambito del Calcolo
Differenziale in più variabili ed introdurli alla teoria moderna dell'integrale di
Lebesgue per funzioni di più variabili.
Differenziale in più variabili ed introdurli alla teoria moderna dell'integrale di
Lebesgue per funzioni di più variabili.
Expected learning outcomes
Undefined
Lesson period: First semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
CORSO A
Responsible
Lesson period
First semester
Course syllabus
* Lebesgue measure and integral in R^n; calculus of multiple integrals.
* Implicit functions.
* Maxima and minima with constraints; Lagrange multipliers.
* Curves and curve integrals.
* Linear differential forms.
* Surfaces and surface integrals.
* Implicit functions.
* Maxima and minima with constraints; Lagrange multipliers.
* Curves and curve integrals.
* Linear differential forms.
* Surfaces and surface integrals.
MAT/05 - MATHEMATICAL ANALYSIS - University credits: 6
Practicals: 20 hours
Lessons: 32 hours
Lessons: 32 hours
Professors:
Bonetti Elena, Sani Federica
CORSO B
Responsible
Lesson period
First semester
Course syllabus
* Lebesgue measure and integral in R^n; calculus of multiple integrals.
* Implicit functions.
* Maxima and minima with constraints; Lagrange multipliers.
* Curves and curve integrals.
* Linear differential forms.
* Surfaces and surface integrals.
* Implicit functions.
* Maxima and minima with constraints; Lagrange multipliers.
* Curves and curve integrals.
* Linear differential forms.
* Surfaces and surface integrals.
MAT/05 - MATHEMATICAL ANALYSIS - University credits: 6
Practicals: 20 hours
Lessons: 32 hours
Lessons: 32 hours
Professors:
Sani Federica, Terraneo Elide
Professor(s)