Basis of Phisics and Mathematics

A.Y. 2019/2020
5
Max ECTS
50
Overall hours
SSD
FIS/07 MAT/05
Language
Italian
Learning objectives
The scientific method
- fundamental math for understanding physical laws
- fundamental physics underlying the structure and functionality of the organism
- the physical principles of the main diagnostic methods.
Expected learning outcomes
Students:
- know the main mathematical quantities of relevance for understanding physical laws
- know the main physical quantities of relevance for medical physics and for understanding the structure and functionality of the organism
- learn to apply such quantities to problems
- learn the physical and technological bases of diagnostics, with particular attention to imaging diagnostics.
Course syllabus and organization

Single session

Responsible
Prerequisites for admission
Be familiar with the mathematical notions normally provided during the last year of high school. In particular it is necessary to know:

- the algebraic calculation (operations between monomials and polynomials, powers of polynomials, decomposition into prime factors, simplification of algebraic fractions, etc.);
- trigonometry;
- the study of real variable functions;
- elements of infinitesimal calculus, especially derivatives and integrals.

This course does not include lessons dedicated to the mathematics topics listed above. Each student must take care to fill any gaps with personal study.
Assessment methods and Criteria
The learning assessment includes a written test and an oral test.
The two-hour written test is based on numerical exercises and Physics exercises and the minimum grade of 18 allows you to enter the next oral exam. Each written test exercise has a maximum grade assigned based on its complexity up to the total score of 30 points available. The maximum grade assigned to each numerical exercise is indicated in the written test. The written test can include all the exercises of the type carried out during the lectures. During the written test the use of a pocket calculator is allowed but it is not allowed to consult notes or books.
The oral exam must be taken in the same exam session in which the written test was taken and passed. Failure to pass the oral exam does not entail the repetition of the written test, but only the oral test if the latter is carried out by the end of the exam session in which the written test has been passed. If the written test is the last of a corresponding session, the limit for re-taking the oral test is fixed at the first appeal of the next session. To consult the calendar of exam sessions scheduled for the current academic year, reference should be made to the calendar of appeals published on the Degree Course website.
The oral exam globally evaluates the competences acquired by the student and always includes a series of questions on each macro-area of the course contents.
The final grade is not the arithmetic average of the mark of the written test and the oral exam.
The booking on the UNIMIA portal, within the dates established for each appeal, is mandatory for the examination.
Fisica applicata alle scienze radiologiche
Course syllabus
The laws of motion as an effect of the applied forces.
Balance of an extended body subjected to both forces and constraints.
Work of a strength and energy.
Energy conservation.
Statics and fluid dynamics.
Laws of electrostatics.
Concept of field and electric potential.
Capacity concept.
Electric current and Ohm's laws.
General information on magnetic fields and electromagnetic waves.
Electromagnetic waves.
Teaching methods
The course is divided into moments: lectures, cooperative learning and microteaching activities, collective discussion and peer-to-peer evaluation. The lectures slides are uploaded to the Ariel website.
Teaching Resources
KANE, STERNHEIM, Fisica Biomedica (corso introduttivo per Medicina, Scienze Biologiche, Scienze Naturali, Farmacia) - E.M.S.I., Roma
Analisi matematica
Course syllabus
Overview of set theory.
Elementary operations.
Numerical sets.
Exponentials and logarithms.
Equations.
Series and successions.
Review of trigonometry.
Function concept.
Trigonometric, linear, exponential, logarithmic functions; graphics.
Concept of limit of a function.
The continuous function, points of discontinuity, continuous functions over an interval.
Derivative concept, derivative algebra, derivative of the composite function.
Teaching methods
The course is divided into moments: lectures, cooperative learning and microteaching activities, collective discussion and peer-to-peer evaluation. The lectures slides are uploaded to the Ariel website.
Teaching Resources
BORSA, LASCIALFARI: Principi di Fisica EdiSES: Appendice A
KANE: Fisica applicata - E.M.S.I., Roma: Appendice B
SCANNICCHIO: Elementi di Fisica Biomedica - EdiSES: Capitolo 1
GIANCOLI: Fisica. Principi e Applicazioni - CEA: Appendice
Analisi matematica
MAT/05 - MATHEMATICAL ANALYSIS - University credits: 2
Lessons: 20 hours
Professor: Del Favero Elena
Fisica applicata alle scienze radiologiche
FIS/07 - APPLIED PHYSICS - University credits: 3
Lessons: 30 hours
Professor: Del Favero Elena
Professor(s)