Structural biology and enzymology

A.Y. 2019/2020
Overall hours
Learning objectives
The course will deal with protein engineering, a novel and dynamic field, which leads to production of modified proteins used to elucidate biological processes, structure-function relations of proteins, for the development of bioactive compounds and applications of proteins in all domains of biotechnologies. 
Expected learning outcomes
At the end of this class , the students are expected to have refreshed basic concepts in protein structure-function relations and enzymatic catalysis; have understood the rational of current protein engineering approaches and methods; have acquired the ability to correlate the theoretical and experimental connections between the disciplines involved and their relevance to biotechnological developments; have acquired the technical vocabulary needed to critically read research articles and to present them in oral and written forms.
Course syllabus and organization

Single session

Course syllabus
The lectures will first review information on: (i) protein structure, folding and structure-function relations, (ii) the principles of enzyme catalysis and kinetic tools to study enzyme catalytic properties; (iii) spectroscopic techniques for the study of proteins and their function; (iv) techniques and strategies for the overexpression, purification and modification of molecular targets, especially proteins and enzymes.
Lectures. will then be largely based on the discussion of articles from specialized journals, and will cover:
- protein engineering goals and strategies
- design, expression, selection, isolation, and characterization of protein variants.
Examples of successful protein engineering experiments will be discussed during classes and made available to students.
Prof. Nardini and Prof. Vanoni will share the teaching of this class by focusing on structural biology and enzymology aspects applied to protein engineering, respectively.
Prerequisites for admission
A revision of the topics covered by the basic biochemistry and molecular biology classes included in the bachelor curriculum before attending the course is highly recommended.
Teaching methods
Teaching Mode: Classroom lectures supported by projected material with common discussions on experimental design, data analysis, and specific case studies. Attendance is highly recommended.
Teaching Resources
Voet, D. & Voet, J.G Biochemistry , 4th Edition, J. Wiley & Sons
· Fersht, A. Structure and mechanism in protein science (Freeman)
· Frey, P.A. & Hegeman, A.D. Enzymatic Reaction Mechanisms, Oxford University Press (2007)
· Petsko, G.A. & Ringe, D. Protein structure and function, New Science Press, 2004
Articles on which lectures will be based.

Copies of the slides projected in the classroom as well as other materials will be made available through the course website on the ARIEL platform of the University of Milano ( By no means this material replaces the lectures or a textbook. The material is made available only to registered students of the Degree Course in Molecular Biotechnology and Bioinformatics and should not be distributed to others.
Assessment methods and Criteria
The evaluation of the student's performance will be based on a "journal club" activity and a written examination with open-answer questions spanning all topics covered in the class.
For the "journal club" activity students will work in small groups. Presentations will be done at the end of the class and before the written exam. The evaluation of the Journal club activity will account for up to 2 points of the final grade. Students will have the possibility (if they wish) to integrate the written exam with an oral discussion of the written paper to clarify their actual mastering of the topics.
The final grade will result from the joint evaluation of each candidate by the two teachers.
BIO/10 - BIOCHEMISTRY - University credits: 6
Lessons: 48 hours
Thursday, 10:30-12:30
Dept. of Biosciences, C tower, 5th floor
Monday, 1 pm -2 pm
Protein Biochemistry Unit, DSBB, Via Celoria 26, 5C