Computer Knowledge and E-Skills

A.Y. 2022/2023
6
Max ECTS
64
Overall hours
Language
Italian
Learning objectives
The course aims to provide students with basic knowledge and skills in computer science and statistics, applying concepts to the reading, synthesis, analysis and interpretation process of complex phenomena.
We will introduce basic concepts of descriptive statistics, such as methods for data collection, representation, and analysis, measures of central tendency, measures of dispersion, relationship between two statistical variables (bivariate statistics, correlation, linear regression).
In order to develop statistical and computational thinking, these topics will be transferred into the application field through the use of software tools.
A cross-cutting objective is to provide students with new skills they can immediately use in their studies and that are crucial to enter the job market.
Expected learning outcomes
At the end of the course, students will be able to:
- collect data using information gathering tools and public sources;
- represent data both graphically and through appropriate summary values;
- interpret data by exploring the relationship among variables;
- use software and write scripts for managing, processing, automating, representing and archiving datasets;
- design and produce useful multimedia content for third-party users;
- adopt an ethical approach to the use of Information and Communication Technologies;
- critically use collaborative and productivity tools.
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
First semester
Course syllabus
Unit of computer science
Microsoft Office Word (word processing):
Basic Concepts: The MS Office Word program (editors of text); program layout and display; opening, writing, saving, and document management; exporting .doc(x) document to other formats (.pdf); page setup (margins, orientation, binding); header, footer, and page body; printing document;
Text formatting and display: font formatting (type, style, size, color, effects); inserting special characters; paragraph format (alignment, indentation, spacing, line spacing); bulleted and numbered list; borders and background; styles; breaks, text in column; tabs; display mode (normal, print layout); document layout for printing; print preview and print document;
Object insertion: image insertion, editing and layout; table insertion and formatting;
Tools: spell-check; suggested synonyms; "find and replace" command; "review" mode.
Microsoft Office Excel (Calculation and Data Analysis):
Basic concepts: The MS Office Excel program and spreadsheets; program layout and display; opening, saving and managing spreadsheet; export spreadsheet .xls(x) to other formats (.pdf); spreadsheet structure (rows, columns, cells); cell formatting (font, background, borders, alignment, data format);
Functions and data and information management: logical functions (example: AND, OR, IF, PLUS.IF; IF.ERROR), search and reference (example: SEARCH.VERT; SEARCH.ORIZZ; COMPARE; INDEX); mathematical and trigonometric (example: SUM.IF; SUM.PLUS.IF); relative and absolute references; conditional formatting; sorting data according to criteria; filters; dependent cell search, error checking, validation, group, separate and subtotal tools;
Graphs: choice of graph type and its customization.
PowerPoint (Presentations):
Basic concepts: The MS Office Power Point program and presentations; program layout and display; opening, saving and document management; exporting .ppt(x) document to other formats (.pdf);
Slide management and object insertion: layout, sorting and slide display mode; image insertion from file/clipart; inserting and editing diagrams and organization charts;
Animated presentations: inserting and editing slide transition effects; inserting and editing object animations in slides; trigger methods for transitions and animations; "presentation" mode; saving pptx file as presentation only;
Microsoft Office Access (database preparation and management) - hints:
Tables, queries, tabs, reports.
Tools for searching, storing and sharing data.
Searching bibliographic sources (example: Mendeley, Zotero);
Data storage and sharing (example: Dropbox, Google drive).

Unit of statistics
Introduction to statistics
Definition, usefulness and uses of statistics;
Basic concepts (population, sample, variable);
Statistical language;
Data handling
How to organize data;
Secondary data and sources;
Primary data and sampling;
Survey techniques;
Datasets, tables and graphs;
Data analysis
Data distribution;
Qualitative data organization;
Quantitative data organization;
The data central position indices (mean, median and mode);
The scatter indices (range, mean absolute deviation, variance, standard deviation, interquartile range, properties of typical intervals)
The shape indices for unit data and data grouped into classes (Pearson skewness index, first and second Pearson skewness coefficient, Fisher skewness index, Pearson-Fisher skewness coefficient, kurtosis index);
The non-central position indices (z-scores, quartiles);
Outliers;
Univariate Analysis-The Exploratory Data Analysis (boxplot, five-number synthesis);
Univariate Analysis - How to describe a distribution;
Bivariate Analysis - The Correlation;
Bivariate Analysis - The simple linear regression.
Probability and normal distribution;
Multivariate data analysis, basic concepts. Principal component analysis (PCA);
Software di programmazione utili per la gestione, l'elaborazione, l'automazione, l'archiviazione la rappresentazione dei dati.
Prerequisites for admission
A good knowledge of spoken and written Italian is required.
Teaching methods
Lectures are held in person with a large part spent in the lab. For both units (Computer Science and Statistics), the teaching includes both theoretical lectures (16+16 h) and exercises (16+16 h) for the practical application of the theoretical concepts covered during the lectures.
Only the statistics lectures are recorded on Microsoft Teams and made available only to students classified as workers.
Teaching Resources
1. Slides and Lecture Notes;
2. Lecture recordings (statistics unit and working students only);
3. Sullivan III, M. (2018) Fundamentals of Statistics, Pearson: part 1, part 2.
Assessment methods and Criteria
The final test involves an assessment based on the performance of a written test. The test lasts 90 minutes and consists of 25 multiple-choice questions and 1 computer exercise in order to verify the use of the digital tools presented during the course. The final result will be expressed as "approved" or "not approved."
Exam registration will be via SIFA only and the application will be closed approximately 7 days before the test date. Students will have the opportunity to register about 14 days before the application closes.
- University credits: 6
Computer room practicals: 32 hours
Lessons: 32 hours