Stochastic Control Optimization

A.Y. 2024/2025
6
Max ECTS
47
Overall hours
SSD
MAT/06
Language
Italian
Learning objectives
Basic problems, methods and results in the theory of optimization of stochastic dynamical systems will be presented. Both discrete-time and continuous-time models will be considered, over finite and infinite horizon. Continuous-time models will be mostly described by stochastic differential equations. The main approaches will be dynamic programming, the study of the Hamilton-Jacobi-Bellman equation (including cases of solutions with low regularity), backward stochastic differential equations, the stochastic maximum principle (in the sense of Pontryagin). A brief introduction to other optimization problems will be given, such as optimal stopping or impulse control, and applications to basic models will be presented, for instance optimal investment problems in Mathematical Finance or linear quadratic optimal control.
Expected learning outcomes
Students attending the course will become acquainted with various classes of control and optimization problems for stochastic systems (with discrete time, with continuous time and formulated by stochastic differential equations, on finite and infinite horizon). They will learn the basic methods to solve such problems: dynamic programming and Hamilton-Jacobi-Bellman equations, backward stochastic differential equations, the stochastic maximum principle. They will also see how important models can be analyzed, such as optimal investment problems in Mathematical Finance and linear quadratic problems.
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Responsible
Lesson period
First semester
MAT/06 - PROBABILITY AND STATISTICS - University credits: 6
Practicals: 12 hours
Lessons: 35 hours
Shifts:
Professor(s)
Reception:
Monday, 10:30 am - 1:30 pm (upon appointment, possibly suppressed for academic duties)
Department of Mathematics, via Saldini 50, office 1017. On line if required by the pandemic conditions.