History of the Foundations of Physics

A.Y. 2025/2026
9
Max ECTS
60
Overall hours
SSD
M-STO/05
Language
Italian
Learning objectives
Undefined
Expected learning outcomes
Undefined
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Single session

Lesson period
Second semester
Course syllabus
The mathematisation of "natural philosophy" (the discipline whose purpose was to investigate the causes of natural phenomena) underwent considerable development from the early 17th century to the early 18th century. From the time of Galileo, some innovative mathematicians began to apply mathematics to the study of nature with unprecedented success. To achieve this goal, it was necessary to innovate mathematics. However, this innovative approach was often rejected and dismissed by defenders of methods rooted in the Aristotelian and in the Euclidean traditions. Furthermore, it was not clear among the innovators which mathematical methods should be defended and developed and what was the nature of mathematical objects. The debate concerning the nature and aims of mathematical natural philosophy touched on many philosophical themes, such as the relationship between symbolism and reality, the certainty of the mathematical sciences, the relationship between geometry and algebra, and the nature of the continuum and infinitesimal quantities. The course explores these debates by focusing on the positions held by some of the protagonists, such as Galileo, Descartes, Newton and Leibniz, and by drawing on secondary literature that often offers contrasting images of this chapter of the so-called "scientific revolution". The course has a twofold purpose: to introduce students to a chapter of the history of science that is often overlooked in philosophy courses and to critically consider the historiography dedicated to it.
Prerequisites for admission
There are no specific requirements other than those requested for admission to the MA degree in philosophical sciences.
Teaching methods
Lectures delivered by the instructor. Useful information and slides will be uploaded to the MyAriel page of the course
Teaching Resources
Programme for 6 and 9 cfu

N. Guicciardini, "Mathematics and the New Science", in The Oxford Handbook of the History of Physics, Jed Buchwald and Robert Fox (eds.), Oxford University Press, 2013, pp. 226-264. [Non disponibile online. File word dell'autore sarà disponibile poco prima dell'inizio del corso sulla pagina MyAriel del corso]

N. Guicciardini "Un Altro Presente: on the historical interpretation of mathematical texts", BSHM Bulletin: Journal of the British Society for the History of Mathematics, 33(3) (2018), pp. 148-165 [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

M.Schneider, "Contextualizing Unguru's 1975 Attack on the Historiography of Ancient Greek Mathematics", in V.R. Remmert et al. (eds.), Historiography of Mathematics in the 19th and 20th Centuries, Trends in the History of Science, Springer International Publishing Switzerland, 2016, pp. 245-267 [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

D. E. Rowe, "Neugebauer's Vision for Rewriting the History of Ancient Mathematics", in V.R. Remmert et al. (eds.), Historiography of Mathematics in the 19th and 20th Centuries, Trends in the History of Science, in Springer International Publishing Switzerland 2016, pp. 123-141. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

A. Musgrave and C. Pigden, "Imre Lakatos", The Stanford Encyclopedia of Philosophy (edizione primavera 2023), Edward N. Zalta e Uri Nodelman (a cura di) [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

D. Gillies, Lakatos and the Historical Approach to Philosophy of Mathematics, Elements in the Philosophy of Mathematics, Cambridge University Press, 2023.[disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

D. Bloor, "Polyhedra and the Abominations of Leviticus", The British Journal for the History of Science, Vol. 11, No. 3 (Nov., 1978), pp.245-272. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

J. Worrall, "A Reply to David Bloor", The British Journal for the History of Science, Vol. 12, No. 1 (Mar., 1979), pp. 71-81. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Massimo Mazzotti, "Introduction Mathematics as Social Order", in Reactionary Mathematics: a Genealogy of Purity, Chicago University Press, pp. 1-16. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Leo Corry, "Kuhnian issues, scientific revolutions and the history of mathematics", Studies in History and Philosophy of Science 24(1) (1993), 95-117. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Giuseppina D'Oro and James Connelly, "Robin George Collingwood", The Stanford Encyclopedia of Philosophy (Winter 2020 Edition), Edward N. Zalta (a cura di) [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Q. Skinner, "Meaning and Understanding in the History of Ideas." History and Theory 8 (1969), pp. 3-53. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

W. K. Wimsatt Jr. and M. C. Beardsley, "The Intentional Fallacy", The Sewanee Review, Vol. 54, No. 3 (Jul. - Sep., 1946), pp. 468-488. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

D. Dutton, "Why Intentionalism Won't Go Away," in Literature and the Question of Philosophy, edited by Anthony J. Cascardi, pp. 192-209. (Baltimore: Johns Hopkins University Press, 1987). [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Additional material only for the the program 9 cfu

N. Guicciardini , "Chapter 1: Introduction: The historical interpretation of mathematical texts and the problem of anachronism'", in N. Guicciardini ed., Anachronisms in the History of Mathematics: Essays on the Historical Interpretation of Mathematical Texts, Cambridge: Cambridge University Press, 2021, pp. 1-41. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

N. Guicciardini, "Henk J. M. Bos (1940-2024): A first assessment of his legacy in the field of history of mathematics", Historia Mathematica, 2024, pp. 40-48. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]

Bos, H.J.M., "Philosophical challenges from history of mathematics". In: Hoff Kjeldsen, T., et al. (Eds.), New Trends in the History and Philosophy of Mathematics, University Press of Southern Denmark, Odense, 2004, pp. 51-66. [non disponibile online, le slides del docente su questo testo verranno caricate poco prima dell'inizio del corso sulla pagina MyAriel del corso]

N. Guicciardini "On Newton's Mathematical Writings: Disciplinary Boundaries and Circulation", Historia Scientiarum, 32 (1), pp. 5-16. [Non disponibile online. File word dell'autore sarà disponibile sulla pagina MyAriel del corso]

For students who are not attending the lectures.

To the above texts add:

Course 6CFU

Thomas S. Kuhn, "Mathematical vs. Experimental Traditions in the Development of Physical Science", The Journal of Interdisciplinary History, Vol. 7, No. 1 (Summer, 1976), pp. 1-31.[disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]


Course 9 CFU

Thomas S. Kuhn, "Mathematical vs. Experimental Traditions in the Development of Physical Science", The Journal of Interdisciplinary History, Vol. 7, No. 1 (Summer, 1976), pp. 1-31. [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]


Gingras, Yves, "What Did Mathematics Do to Physics?" History of science, (2001), Vol.39 (4), p.383-416 [disponibile online, poco prima dell'inizio del corso verrà caricato sulla pagina MyAriel del corso]
Assessment methods and Criteria
Students must submit a written paper on a topic agreed upon with the instructor (approximately 5,000 words), which will be evaluated according to the following criteria: 1. relevance to the topics discussed during the course; 2. originality of the chosen topic and methodology; 3. analytical competence and depth of interpretation; 4. formal quality of the presentation (appropriate terminology, coherence of argument, accuracy of critical apparatus).
The paper must be sent to the instructor by email at least one week before the exam date, which will consist of a discussion of the texts included under "Reference Material" in the programme, starting from the teacher's comments on the written paper.
Parte A e B
M-STO/05 - HISTORY OF SCIENCE AND TECHNOLOGY - University credits: 6
Lessons: 40 hours
Parte C
M-STO/05 - HISTORY OF SCIENCE AND TECHNOLOGY - University credits: 3
Lessons: 20 hours
Professor(s)
Reception:
Thursday 10:30-13:30. In July and August I will be away but we can arrangi a video call.
If you contact me via mail a Teams/Zoom video call can be arranged.