Molecular Bases of Life
A.Y. 2025/2026
Learning objectives
The course aims to:
a) explain molecular/cellular mechanisms related to human biological systems and to understand the genesis of pathological states;
b) explain the structure-function relationship of macromolecules;
c) Describe intra- and inter-cellular communication of tissues and systems with particular reference to muscle, nervous, respiratory, digestive, coagulative, skeletal, immune, hematological systems;
d) understand the biochemical processes from the point of view of physiological and pathological outcomes;
e) learn the molecular mechanisms involved in pathological processes, the development of innovative diagnostic strategies and their role in precision medicine.
a) explain molecular/cellular mechanisms related to human biological systems and to understand the genesis of pathological states;
b) explain the structure-function relationship of macromolecules;
c) Describe intra- and inter-cellular communication of tissues and systems with particular reference to muscle, nervous, respiratory, digestive, coagulative, skeletal, immune, hematological systems;
d) understand the biochemical processes from the point of view of physiological and pathological outcomes;
e) learn the molecular mechanisms involved in pathological processes, the development of innovative diagnostic strategies and their role in precision medicine.
Expected learning outcomes
Students:
a) know the molecular and biochemical mechanisms underlying the biological systems in health and their alterations in disease;
b) know the basics of molecular, translational and personalized medicine, as well as system biochemistry;
c) develop the ability to identify and deepen the topics covered in the course through the international scientific literature by compiling a mini-review in English.
a) know the molecular and biochemical mechanisms underlying the biological systems in health and their alterations in disease;
b) know the basics of molecular, translational and personalized medicine, as well as system biochemistry;
c) develop the ability to identify and deepen the topics covered in the course through the international scientific literature by compiling a mini-review in English.
Lesson period: First semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Single session
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 6
Lessons: 48 hours
: 24 hours
: 24 hours
Professors:
Caretti Anna, Samaja Michele
Shifts:
Molecular biology
BIO/11 - MOLECULAR BIOLOGY - University credits: 3
Lessons: 24 hours
: 12 hours
: 12 hours
Professors:
Beghini Alessandro, Pasini Diego
Shifts:
Professor(s)
Reception:
by appointment to be agreed via email
Hospital S.Paolo, Via A. Di Rudinì 8, 6th Floor, Block C
Reception:
To be defined via e-mail
c/o Osp. San Paolo, Via A. di Rudinì 8, Laboratorio di Biochimica, 9 piano, Blocco C,