Analytical Chemistry
A.Y. 2021/2022
Learning objectives
The learning objectives of the analytical chemistry course are: acquisition of the basic knowledge of classical and instrumental analytical techniques; acquisition of critical capacity in assessing the accuracy and precision of experimental data using statistical methods; acquisition of the ability to solve analytical problems related to complex equilibria in solution and quantitative analysis of compounds.
Expected learning outcomes
The learning outcomes of analytical chemistry course are: the knowledge of the procedures for the elaboration and evaluation of experimental data; the knowledge of the main complex in solution chemical equilibria and the ability to solve the problems that involve them; the knowledge of the basic principles and procedures of the most important classical and instrumental analytical techniques; the ability to discriminate the most suitable technique to solve a specific analytical problem; the ability to use the analytical language to describe analytical methods and to report the result correctly and unequivocally.
Lesson period: Second semester
Assessment methods: Esame
Assessment result: voto verbalizzato in trentesimi
Single course
This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.
Course syllabus and organization
Linea AK
Responsible
Lesson period
Second semester
Course syllabus
Statistical analyses of experimental data: errors in chemical analyses, statistical error treatment, confidence intervals, error propagation, t test, variance analysis.
Samples and analytical methods: sampling, standardization, calibration, sources and treatment of the error in the analytical process, characteristics of an analytical method (accuracy, precision, specificity and selectivity, linearity range, robustness).
Chemical equilibria: aqueous solutions, buffer solutions, multiple equilibria.
Classic methods of analysis: gravimetric analysis, titrations, neutralization titrations, complex acid / base systems, complexation and precipitation reactions and titrations. Applications.
Electrochemical methods: redox reactions, electrochemical cells, standard electrode reactions. Calculation of the potentials of electrochemical cells, equilibrium constants and the redox titration curve. Applications.
Spectroscopy analysis: electromagnetic radiation, radiation absorption, electromagnetic radiation emission, instruments for optical spectroscopy, molecular absorption spectroscopy, UV-visible and IR fluorescence spectroscopy, atomic spectroscopy, atomic and molecular mass spectrometry (principles, instrumentation and applications).
Separations: analytical separations by precipitation, extraction, ion exchange, chromatography (liquid and gas chromatography). Instruments and detectors. Applications.
Samples and analytical methods: sampling, standardization, calibration, sources and treatment of the error in the analytical process, characteristics of an analytical method (accuracy, precision, specificity and selectivity, linearity range, robustness).
Chemical equilibria: aqueous solutions, buffer solutions, multiple equilibria.
Classic methods of analysis: gravimetric analysis, titrations, neutralization titrations, complex acid / base systems, complexation and precipitation reactions and titrations. Applications.
Electrochemical methods: redox reactions, electrochemical cells, standard electrode reactions. Calculation of the potentials of electrochemical cells, equilibrium constants and the redox titration curve. Applications.
Spectroscopy analysis: electromagnetic radiation, radiation absorption, electromagnetic radiation emission, instruments for optical spectroscopy, molecular absorption spectroscopy, UV-visible and IR fluorescence spectroscopy, atomic spectroscopy, atomic and molecular mass spectrometry (principles, instrumentation and applications).
Separations: analytical separations by precipitation, extraction, ion exchange, chromatography (liquid and gas chromatography). Instruments and detectors. Applications.
Prerequisites for admission
The general inorganic chemistry course is a prerequisite for full understanding of the lessons. In addition, students should have acquired the basics of mathematics and physics.
Teaching methods
The course is organized in lectures (48 hours) in which the theoretical principles of qualitative and quantitative analysis and their applications will be illustrated. Numerical exercises related to analytical problems will also be performed in order to deepen the theoretical concepts covered in the course.
Teaching Resources
Recommended books: Holler, Crouch - Fundamentals of Analytical Chemistry, Skoog & West; Harris - Chimica analitica quantitativa - 3° Ed - Zanichelli (2017);
Slides uploaded to the Ariel's website
Slides uploaded to the Ariel's website
Assessment methods and Criteria
The exam test will consist of 2 exercises and two open-ended questions. The duration will be 2 hours in presence. The exam aims to assess the achievement of the following learning outcomes: knowledge of the procedures for processing and evaluating experimental data; the knowledge of the main complex in the solution of chemical balances and the ability to solve the problems that involve them; knowledge of the basic principles and procedures of the most important classical and instrumental analytical techniques; the ability to establish the most suitable technique to solve a specific analytical problem; the ability to use the analytical language to describe analytical methods and report the result correctly and unequivocally.
CHIM/01 - ANALYTICAL CHEMISTRY - University credits: 6
Lessons: 48 hours
Professor:
D'Amato Alfonsina
Linea LZ
Lesson period
Second semester
CHIM/01 - ANALYTICAL CHEMISTRY - University credits: 6
Lessons: 48 hours
Professor:
Soave Raffaella
Professor(s)