Basic Sciences

A.Y. 2022/2023
5
Max ECTS
75
Overall hours
SSD
BIO/10 BIO/13 FIS/07
Language
Italian
Learning objectives
The aim of this course is:
Know the fundamentals of chemistry necessary for the understanding of living matter and organic compounds of interest for biochemistry;
Know the molecular and biochemical mechanisms that underlie the vital processes and related metabolic activities;
Know the fundamental concepts of physics useful for understanding and interpreting physiological phenomena;
Know the structure and functions of the eukaryotic cell; Know the mechanisms of transmission and expression of genetic information.
Expected learning outcomes
At the end of the course the student:
- will learn the behavior of biologically active molecules, gaining the appreciation of the chemical transformations in the life processes;
- will expose and explain, in a simple but rigorous manner, the chemical and biochemical phenomena or processes that are the basis of life;
- will be able to describe the structure and functions of a cell, including cell-cell communication;
- will be able to explain the content of Mendelian laws, about the transmission of monogenic characters and will know the mechanisms of gene expression and of the transmission of genetic information;
-will be able to provide a physical description of some key physiological processes;
- will understand the connections between chemistry, physic and biology;
- will be able to do exercises based on the fundamental concepts of physics and metrology.
Single course

This course cannot be attended as a single course. Please check our list of single courses to find the ones available for enrolment.

Course syllabus and organization

Sezione: Cernusco

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
BIO/10 BIOCHEMISTRY - CFU 2
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
BIO/13 APPLIED BIOLOGY - 2 CFU
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
FIS/07 APPLIED PHYSICS - 1 CFU
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Cantone Marie Claire
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Massa Valentina

Sezione: Cesano Boscone

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.

The exams will be carried out in-class and/or remotely . Oral exams will be carried out remotely using the Microsoft Teams platform or other online platforms provided by the University. The distance written exams will be carried out using the Exam.net platform or other platforms provided by the University according to the modalities illustrated on the web site http://www.unimi.it
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Giavazzi Fabio
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Francolini Maura

Sezione: Crema

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F., Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F., Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F., Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Assandri Roberto
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Bonaldi Tiziana

Sezione: Don Gnocchi

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
The written test includes closed and / or open-ended questions.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Giavazzi Fabio
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Francolini Maura

Sezione: Fatebenefratelli

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Lessons and practical exercises with 3D models
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2013
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2015
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017
Scannicchio et al. Elementi di Fisica Biomedica. Napoli: Edises; 2015
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Lessons and practical exercises with 3D models
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2013
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2015
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017
Scannicchio et al. Elementi di Fisica Biomedica. Napoli: Edises; 2015
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Lessons and practical exercises with 3D models
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2013
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2015
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017
Scannicchio et al. Elementi di Fisica Biomedica. Napoli: Edises; 2015
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Chiricozzi Elena
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Venturin Marco

Sezione: IEO

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Chiricozzi Elena
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Venturin Marco

Sezione: Lodi

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Urso Gaetano
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professors: Gavina Manuela, Papi Frediano
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Villa Chiara

Sezione: Magenta

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium: equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F., Lascialfari A., Principi di fisica- Edises (Napoli), 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Chiricozzi Elena
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Venturin Marco

Sezione: Niguarda

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lessons
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lessons
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lessons
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020
Solomon et al. Elementi di biologia. Napoli: Edises, 2017
Curti et al. Elementi di biologia. Bologna: Zanichelli, 2017
Borsa F, Lascialfari A. Principi di Fisica. Edises, Napoli, 2020
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna, CEA Zanichelli, 2019
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Giavazzi Fabio
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Francolini Maura

Sezione: Policlinico

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professors: Cantone Marie Claire, Pettinato Vincenzina
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Mauri Laura
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours

Sezione: Rho

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours

Sezione: Sacco

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Porta Alberto
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Ottria Roberta
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours

Sezione: San Carlo

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes;
Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Chiricozzi Elena
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Venturin Marco

Sezione: San Donato

Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
P. Bonaldo, C. Crisafulli, R. D'Angelo, M. Francolini, S. Grimaudo, C. Rinaldi, P. Riva, M.G. Romanelli. Elementi di biologia e genetica. EdiSES 2019
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
P. Bonaldo, C. Crisafulli, R. D'Angelo, M. Francolini, S. Grimaudo, C. Rinaldi, P. Riva, M.G. Romanelli. Elementi di biologia e genetica. EdiSES 2019
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
P. Bonaldo, C. Crisafulli, R. D'Angelo, M. Francolini, S. Grimaudo, C. Rinaldi, P. Riva, M.G. Romanelli. Elementi di biologia e genetica. EdiSES 2019
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Ardu Veronica
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Rota Paola
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Galimberti Daniela

Sezione: San Giuseppe

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Battaglia Cristina
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours

Sezione: San Paolo

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Mauri Giovanni
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor: Gallina Andrea

Sezione: Tumori

Responsible
Prerequisites for admission
There are no specific prerequisites other than those required for admission to the degree course.
Assessment methods and Criteria
The written test includes closed and / or open-ended questions.
Biochemistry
Course syllabus
Atomic structure: chemical bonds: ionic and covalent bonds.
Intermolecular bonding: van der Waals forces and hydrogen bond.
Water: structure and properties; weak interactions in aqueous systems.
Aqueous solutions: concentration of solutions; colligative properties; osmosis.
Chemical reactions: basic concepts; reactions and chemical equilibrium; catalysts; redox reactions.
Ionic equilibrium : equilibrium of water autoionization; pH; acids and bases; buffer solutions.
Bonding in carbon compounds: common classes of organic compounds.
Biomolecules and their structures.
Enzymes: structure, regulation and mechanism of action.
Metabolism: overview of metabolism; anabolic and catabolic pathways.
Energy metabolism: high energy molecules; ATP cycle; mechanisms of ATP synthesis; Krebs cycle; electron transport chain and oxidative phosphorylation.
Carbohydrate metabolism, basic concepts: digestion; origin and metabolic pathways of glucose; regulation of carbohydrate metabolism.
Lipid metabolism, basic concepts: digestion; origin and metabolic pathways of fatty acids; regulation of lipid metabolism.
Amino acids metabolism, basic concepts: digestion; origin and metabolic pathways of amino acids; regulation of amino acids metabolism.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Experimental biology
Course syllabus
Characteristics of the living matter: the cell theory; Methods to study the cell; Prokaryotes and eukaryotes; Levels of organization in Biology; Bases of biological evolution
Biological Macromolecules: Lipids, carbohydrates, nucleic acids and proteins.
Structure and organization of the eukaryotic cell: cellular compartmentalization; intracellular organelles; ribosomes; cytoskeleton; intercellular junction and extracellular matrix.
Structure and function of biological membranes: Fluid mosaic and transport across membranes
Cell-cell communications: How cells communicate with each other.
Cell cycle and cell-cycle regulation: Phases and control; cell death and transformation
Reproduction in living organisms: Sexual and asexual reproduction; mitosis and meiosis; gametogenesis, fertilization and differentiation.
DNA replication: the central dogma of molecular biology; DNA duplication and repair.
Transcription: Different types of RNA, RNA synthesis and maturation
Genetic code and protein translation: properties of the genetic code; protein synthesis and maturation.
The eukaryotic genome: chromatin structure; gene structure and control of gene expression.
Viruses: classification, structure and interaction with the host.
The Mendelian Laws and the transmission of monogenic traits: Genotype and phenotype; dominant, co-dominant and recessive alleles.
Monogenic genetic disease transmission: Cystic fibrosis; Thalassemia
Blood groups and multiple alleles
Teaching methods
Frontal lessons
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
Course syllabus
Introduction: Measurements in Physics. Fundamental and derived quantities. The International System of Units. Vector algebra.
Kinematics: Trajectory, displacement, velocity, acceleration, linear motion.
Dynamics - Newton's laws, gravitational force, force field, work, energy, power.
Statics - Equilibrium of a point particle, rigid body, torque, equilibrium of a rigid body, center of mass, stability, levers in the human body.
Statics e Dynamics of fluids - Aggregation states, density, pressure, Pascal's law, Stevin's law, Archimedes' principle, buoyancy, measurement of the pressure, flow rate, Hagen-Poiseuille's law.
Thermodynamics - Temperature, equation of state of an ideal gas, heat, specific heat, heat transfer.
Electrostatics and currents -Electric charge, Coulomb's law, potential energy and voltage, conductors and insulators, condenser, electrical current, Ohm's laws.
Radiations - Ionizing radiations, natural and artificial sources, radioactivity, radioactive decay, X ray.
Teaching methods
Frontal lesson
Teaching Resources
Samaja M, Paroni R. Chimica e Biochimica per le lauree triennali dell'area Biomedica. Padova: Piccin,2017.
Bertoldi M, el al. Chimica e Biochimica. Napoli: Edises; 2020.
Solomon et al. Elementi di Biologia. Napoli: Edises; 2017.
Curti et al. Elementi di Biologia. Bologna: Zanichelli; 2017.
Borsa F. , Lascialfari A., Principi di fisica- Edises (Napoli) , 2020.
Contessa GM, Marzo GA. Fisica applicata alle scienze mediche. Bologna: CEA Zanichelli, 2019.
Applied physics
FIS/07 - APPLIED PHYSICS - University credits: 1
Lessons: 10 hours
Online courses: 5 hours
Professor: Tenconi Chiara
Biochemistry
BIO/10 - BIOCHEMISTRY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Experimental biology
BIO/13 - EXPERIMENTAL BIOLOGY - University credits: 2
Lessons: 20 hours
Online courses: 10 hours
Professor(s)
Reception:
to be defined by email
Palazzo LITA, via Fratelli Cervi 93, 20054, Segrate
Reception:
to be defined by appointment, via email or telephone
Building 13, Floor 1 of the Department of Experimental Oncology of the European Institute of Oncology, Via Adamello 16, Milan
Reception:
By appointment
Reception:
14.30 - 15.30
via Saldini 50
Reception:
Please contact [email protected] to schedule a meeting
Via Fratelli Cervi 93 Segrate Milano Dept. Medical Biotechnology and Translational Medicine
Reception:
by appointment
Building LITA Vialba, 4 floor, room 4028
Reception:
on appointment
Reception:
to be scheduled, please email me for additional information
LITA, Via Fratelli Cervi 93, Segrate, MI
Reception:
by appointment to be agreed via e-mail
San Donato Milanese - via R. Morandi 30